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Electronic Automotive Throttle SystemElectronic Automotive Throttle System

Future WorkFuture Work

• An ever-increasing number of sensors have been employed 
in dynamic systems to ensure correct control functionalities 
and diagnosis.

• Nevertheless, a sensor itself degrades and fails, just as any 
other dynamic system.

• A faulty sensor may cause undesirable system performance, 
process shut down, or even a fatal accident. 

Instrument Fault Detection 
and Isolation Techniques
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Fit a proper model to the data within the moving 
window by subspace model based method 

x(t+Ts) = A(t)x(t)+B(t)y(t)+K(t)e(t)
y(t) = C(t)x(t)+D(t)y(t)+e(t)

Extract the time constants of the monitored 
system and the sensor from the poles of the 

corresponding transfer function 
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no nonlinearity included 
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Assumption 2: Sensor 
dynamics is much faster 
than that of the plant
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and measurement 
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• Develop methods for the case when the process disturbances 
and measurement noise are colored noise processes.

• Extend this method to detect and isolation degraded sensors 
in presence of nonlinearities in the monitored system
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• The Watchdog Agent™ Toolbox is a software program that 
has been created to assess and predict system performance 
in various conditions and easily assess which combination of 
algorithms is the best fit for a particular application.

• Several interchangeable tools have been developed in 
Matlab and compiled into a standalone application. The 
tools that have been integrated can be seen below in the 
main window of the Watchdog Agent™ Toolbox.

• The software takes as input sensor data from the current, 
normal, and faulty operation of the equipment, and outputs 
the current level of degradation of the system, an ARMA 
prediction of future degradation, and a sensitivity analysis, or
measure of affinity, for the chosen algorithms.

• The Watchdog Agent™ Toolbox has several functional 
layers, shown below, compliant with the Open System 
Architecture for Condition Based Maintenance (OSA-CBM).

• Modularization of the toolbox allows different methods of 
signal processing, feature extraction, performance 
evaluation, and sensor fusion to be used in any combination.

• A method for analysis of discrete event data will be 
added to the toolbox.

• NSF Industry/University Collaborative Research Center 
on Intelligent Maintenance Systems

• National Instruments

Data Acquisition National Instruments PXI system

Data Manipulation Time frequency, wavelet, FFT analysis

Condition Monitor Not currently integrated

Health 
Assessment

Statistical pattern recognition, logistic 
regression, sensor fusion

Prognostics ARMA modeling

Decision Support Not currently integrated

Presentation Graphical user interface (GUI) • Shown below is the degradation analysis from 1100 cycles 
of a boring tool at DaimlerChrysler; two methods of 
performance assessment are compared.

Statistical Pattern Recognition           Logistic Regression
• The following picture shows the National Instruments PXI 

system which is used for data acquisition.

tool 
replacement tool 

wear

High speed (up to 8 MHz) 
simultaneous sampling

PC based data acquisition
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• Provide diagnostic & predictive information in a networked 
industrial automation system at the device level.

• Develop a methodology to evaluate effects of device-level 
embedded prognostics

• Create methods to minimize maintenance-related costs 
through strategic allocation of failure risks associated with 
basic embedded prognostics.

• Built two testbeds for verification and demonstration of 
effects and benefits of the basic prognostics in 
Embedded Watchdog Agent

• The Embedded Watchdog Agent™ solution

• The risk allocation problem

• Due to bandwidth limitations, limited amount of 
maintenance related information is available in an industrial 
networked automation systems. 

• Inherent intelligence of networked devices is not utilized for 
maintenance purposes.

Level 1 & 2 EWA Testbed Sponsored 
By Rockwell Automation and GM

Smart DeviceNet Device Testbed 
Sponsored By Omron

PLC

Level 2 
EWA I/O 

Block 

Cylinders

& Valve

PLC

Level 2 
EWA I/O 

Block 

Cylinders

& Valve

Smart DeviceNet DeviceSmart DeviceNet Device

• Developed a risk allocation methodology for industrial 
automation systems with basic prognostics 
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Risk Allocation of Risks of Failure Using 
Genetic Algorithm

• Developed Dynamic Risk allocation method using Basic 
Embedded Prognostics

• Conduct and improve dynamic optimal risk allocation using 
Basic Embedded Watchdog Agent™ Prognostics in 
complex industrial automation systems.

• Conduct industrial test and cost effect analysis of basic 
prognostics Embedded Watchdog Agent™.

• Defined 3 levels of EWA complexity

Flowchart for optimal risk allocation 
based on a  Genetic Algorithm
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• Develop and evaluate novel network health monitoring 
tools for industrial automation systems

• Develop methodology that could assess and predict the 
performance of industrial automation networks. 

• Identified key failure modes that occur in the networked 
industrial automation systems

• Proposed data acquisition system

• Nearly 54% of failures in a networked industrial 
automation system occur due to faults on the network 
itself.

• There is need to create a predictive agent for assessment 
and prediction of performance of an industrial automation 
network.

• Current tools are not designed to provide such 
capabilities

• Develop NWA for the data link layer

• Develop diagnosis methodology using data from both data 
link layer and physical layer

• Testbed validation and demonstration for NWA.

Measurement of key parameters of DeviceNet

PC

DeviceNet 
Interface Card

Data Acquisition 
Card

Statistic Data
Error Frame Ratio

Bus load
Bus Voltage
Overshoot

Signal-To-Noise Ratio

Framework of the Network 
Watchdog Agent™

• Connection problems, including loose connection of 
cable connectors and terminating resistors
• Corrupt frames, including damaged transceivers, 
grounding problems, electrical Magnetic Interference 
(EMI)

• Identified key parameters that affect the performance  of 
networked industrial automation systems

• Bus voltage and current
• Common Mode Signal features
• Waveform of Digital signal

• Preliminary results of one lost  terminating resistor
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Feature cluster under 
normal condition and 

with one lost 
terminating resistor

Data collection system

• National instruments digital oscilloscope

• SST DeviceNet interface card
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• Detecting and localizing unknown faults i.e. anomalies 

• Sensing gradual performance degradation of controlled 
dynamic system

• Discriminating whether the performance deviation is 
caused by control software or plant (hardware)

• Developing effective diagnostics that can be applied 
comprehensively from product design through design 
validation, manufacturing testing on-board monitoring and 
finally repair service operating

• Ability to detect gradual changes of the system 
parameters as the dynamic system operates. 

• Ability to detect faults that were not observed before (i.e. 
detect anomalies) using the same generic approach.

• No prior assumptions were made about the system 
behavior and the model of system behavior was learnt 
from a normal driving profile.

• Ability to detect and isolate of controller (software) 
anomalies from the plant (hardware) anomalies.

• With the growing complexity of both plants and control 
systems, effective diagnostics for all possible failures has 
become increasingly difficult and time consuming. 

• As a result, many systems rely on limited diagnostic 
coverage provided by a diagnostic strategy which test 
only for known or anticipated failures, and presumes the 
system is operating normally if the full set of tests is 
passed. 

• In addition, these tests are often developed separately 
and at large costs in terms of time and resources after 
hardware and the control system have been produced 
and are available for analysis. 

• Development of effective method for intermittent fault 
detection

Inputs

Initial 
Conditions

OutputsDynamic 
System

Region of 
Operation

SOMs TFA & 
PCA

Performance 
Index

• The new anomaly detection method relies on the use of 
Self-Organizing Maps (SOM) for regionalization of the 
system operating conditions, followed by Time-Frequency 
Analysis (TFA) and Principal Component Analysis (PCA) 
for anomaly detection and fault isolation

• The proposed approach consists of two elements: 
anomaly detection which identifies whether a deviation 
from normal operation has occurred and fault isolation, 
which isolates the problem, as best as possible, to the 
specific component or subsystem that has failed. 

• This project is supported in part by Center for Intelligent 
Maintenance System at University of Michigan, Ann Arbor and 
ETAS Inc., Ann Arbor

Method Overview

Anomaly Detection and Localization

Driving Profile:FTP75

AD on controller AD on plant

Gradual decrease in the gain factor 
(parameter of controller)
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• To develop system modeling and decision support tools 
that integrate different data domains in a semiconductor 
fabrication facility into coherent performance information 
that will facilitate rapid and proactive countermeasures for 
any problem that will adversely affect the yield and uptime

• To coordinate and synthesize the integrated information 
from all stations into system level information that will be 
used to make dynamic, accurate and cost-effective 
maintenance scheduling and product routing decisions

• Framework for data integration and probability inference
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Action

Maint. Info

Maintenance

• Many yield models based on defect detection and critical 
area analysis have been developed, in which, however, 
only defect inspection data are utilized

• Researchers have attempted to predict yield using 
localized in-line data or in-situ measurements of particle 
contamination, which only give a partial picture of the 
process degradation

• Majority of maintenance operations are still based on 
either historical reliability of equipment, or diagnostic 
information from equipment performance signatures 
extracted from in-situ sensors

• Improved yield prediction from integrated information flow 
using enhanced Bayesian networks 

• Enhanced maintenance decision support tools based on 
improved yield estimation model

• Validation of results in an industrial testbed

Semiconductor Research Corporation (SRC)

• Performing case study using semiconductor dataset

• Handling incomplete data without compromising 
inference accuracy

• Periodically updating inference structure when real 
inspection becomes available

• Simulation study to validate the proposed method

• Application to automotive industry dataset
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Prognostics of Mechanical Prognostics of Mechanical 

SystemsSystems
Research Assistants/Staff: Faculty:
R. R. Muminovic  Muminovic  Dr. Dr. D. D. Djurdjanovic Djurdjanovic / Prof.  J. Ni/ Prof.  J. Ni
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Condition Based MaintenanceCondition Based Maintenance

• Shift the maintenance policy from reactive to proactive
• Assess current performance of a railroad bogie bearing

Sensors

Maintenance

Central Control Station

Signal Pre-Processing
and Analysis (LCU & Diagnostic Algorithms)

Performance
Assessment
and Prediction

ApproachApproach

Diagnostic and Prognostic 
Algorithms

Life Cycle unit and diagnostic/prognostic algorithms

Condition based maintenance policy

Feature extraction – Time-frequency distribution

• Time-frequency representation is 
a view of a signal represented 
over both time and frequency.
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• Time-frequency analysis is 
particularly suitable for 
nonstationary signals whose 
frequency content varies over 
time

• High identification rate of functional and defective bearing

• Improved maintenance policy through condition based 
maintenance

Rifet Muminovic <rifet@umich.edu>
Prof. Jun Ni <junni@umich.edu>
Dr. Dragan Djurdjanovic <ddjurdja@umich.edu>
Daniel Odry <daniel.odry@mf.tu-berlin.de>

Measured vibrations

Measurement: Measured vibration and given RPM

• RPM was varied with a 
sinusoidal input

• Sinusoid has a period of 
T=60s

• Experiment was conducted 
with five different loads acting 
on the bogie cage

Support Vector Machine (SVM)
Input Space Feature Space• Training vectors are 

mapped into a higher 
dimensional space with 
help of a kernel

• SVM algorithm creates a 
maximum-margin 
hyperplane that separates 
data into two classes

Testbed

* 
Mapping between input and feature space

Experimental setup

MeasurementMeasurement

Expected ResultsExpected Results

For more information, contact:For more information, contact:

Classification MethodClassification Method
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• Develop novel approach to realize “immune systems”
functionalities in automated systems

• Robustly detect abnormal behaviors, isolate its source, and 
compensate for negative effects to achieve desired 
performance in spite of the presence of an anomaly

• Apply local adaptive controller to the local models

• Vary parameters to simulate anomalies

• Achieve desired performance despite anomalies

• Apply same approach to practical data (i.e. automotive 
engine)

National Science Foundation

• Nonlinear plant is regionalized into several local linear 
models through “divide and conquer” methodology

• Local models are analyzed for fault detection and isolation

• Adaptive local controllers are applied per region to achieve 
desired performance

Benchmark Problem
• Continuously Stir Tank Reactor 

(CSTR) Model is used to serve as 
the plant for preliminary study

• Inputs (flow rate, qr and heat 
transfer removal rate, QC) are used 
to control output (concentration Cb)

Model using Growing Structure Multiple Model 
System (GSMMS) algorithm

Reconfigure control system to 
restore desired performance

Identify anomalies via Anomaly Detection Agents

Diagnose and isolate faults

Are modeling errors large?

Continue control with current GSMMS model

YES
NO

Local Linear Models of Nonlinear System
Operational Space

Local Model

w1

1 1 1ˆ= −e y y

Adaptive Local 
Controller

(C1)

Local 
Model
(A1)

1ŷ

Updating 
Scheme
Via AD1

Nominal
Controller

v1

∑

ref

qr

Cb

QC

CSTR Schematic

Modeling Results

• Recursive Learning for both GSMMS and Fuzzy Logic have 
been performed on CSTR model

• The index, variance accounted for (VAF), has been used to 
quantify the deviation of the models from the actual plant

(Note: the VAF of two equal signals is 100%)

Comparison of Results
GSMMS

Computation Time = 2.01 sec

VAF = 99.1833 %

Fuzzy
Computation Time = 29.87 sec

VAF = 99.7115 %
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