

Dynamic Modeling for Machine Tool Thermal Error Compensation

Research Assistants/Staff H.Yang

Faculty J. Ni

Objectives

- To improve the accuracy and robustness of machine tool thermal error compensation through dynamic modeling
- To develop an innovative methodology for machine tool thermal error modeling based on system identification theory
- To develop a fast thermal error calibration methodology which is suitable for the dynamic thermal deformation system modeling

State-of-the-Art

- The thermal error estimation model is based on static modeling approach which only considers the instantaneous relationship between current temperature measurement and thermal deformation
- The process of extracting thermal error signature is long and costly in order to cover a large range of working conditions

Approaches

Part-oriented Machine Error Self-calibration System

Dynamic Modeling for Machine Tool Thermal Error Compensation

Accomplishments

 Non-stationary thermal-elastic process modeling using Integrate Output Error model

Dynamic modeling for a three-axis horizontal machining center

On-machine Probing

Test Part On-machine Probing

Touch Point

Model Estimation

Future Work

- Development of the Model Adaptation strategy for machine tool thermal error estimation based on the Dynamic Modeling methodology
- Development of the fast calibration procedure and software package for rapid machine error calibration through part error measurements

Sponsors

NSF

Thermal error modeling and compensation of five axis machine tools

Research Assistants/Faculty:

Jie Zhu, George Qiao, Muammer Koc, J. Ni

Objectives

· Development of 5DOF EDM machine station

State-of-the-Art

· Machine structure selection

· Rotary axes distribution

· System configuration

Objectives

· Robust thermal error compensation for adaptive, ultra precision control

State-of-the-Art

• Sensor placement on DMD 505

Preliminary tests

