

Tools for Sensor Performance Assessment

Research Assistants/Staff:

Faculty: D. Djurdjanovic, J. Ni

Objectives

• To detect sensor progressive degradation and predict sensor failures and reconstruct the degrading sensor readings

L. Jiang

State-of-the-Art

- Direct hardware redundancy method: use two or more sensors to measure the same key variable and assess sensor performance by comparing the consistency between different sensors, simple to implement but potentially costly
- Functional redundancy method: use multiple sensors to measure related variables and validate sensor readings by employing sensor fusion techniques, more complex but cheaper approach

Approaches

• Zero-lag correlation based direct hardware redundancy method

Methods

By fitting Auto-Regressive Moving Average Vector (ARMAV) time series model to the data within an extending window, the dynamics of the plant and input/output sensor can be identified by finding the zeros and poles of the transfer function.

Case Study

Zero-lag Correlation Based Hardware Redundancy Method

Future Work

- Evaluate both methods with real industrial data instead of simulation data
- Develop algorithm for sensor data reconstruction

Detection of Intermittent Connections in An Industrial Network

Faculty:

J. Ni, D. Djurdjanovic

Objectives

• Provide network performance and diagnostic information at the device level and network level.

Y Lei

- Develop novel network health monitoring tools for plant floor network systems.
- Minimize network diagnosing time due to intermittent connections on the network.

State-of-the-Art

- Intermittent Connection is difficult to identify.
- No tool available for Intermittent Connection detection

Approaches

Network health monitoring framework

Error Source Detection

Accomplishments

Developed Error Source Detection System

Classification Result of Error Source

Intermittent connection scenarios

- Determination of the error location
 - Assume the intermittent connection locate at the drop cable of a node
 - If we observe two patterns happens coincidentally
 - Node A send error packet after normal packets
 - Error packets followed by packet sent by node A
 - Then Node A has intermittent connection
 - problem.
 - Network Node Health Modeling

• λ_1^k is the rate of corrupted messages

 $\bullet \lambda^k = \lambda_0^k + \lambda_0^k$

Future Work

- · Conduct plant validations
- Construct intermittent connection model and estimate nodes bus-off time

Sponsors

• NSF I/UCRC for Intelligent Maintenance Systems

Cutting Process Monitoring in Turbine Blade Machining

Research Assistants/Staff:

さ 筆

Adam Brzezinski

Objectives

- Track 5-axis mill health under dynamically-varying, oblique loading conditions
- Improve tracking and prediction of process health for various machines through signal processing
- Propose a general method for tracking the health of a mill bit without adding sensors to the system
- Decrease the overall cost of milling compressor blades by using a condition-based method to change mill bits

State-of-the-Art

- Use only the load data (amount of current) from the spindle and 5 servo motor drives to track mill bit health
- Explore correlation between servo motor current and cutting force in an oblique cutting
- Employ Time Frequency Analysis and other recentlydeveloped methods to extract features from load data.

Approach

· Filter raw load data using low-pass filter

- Partition filtered data to separate milling passes based on varying levels in servo-motor current
- Extract features from filtered data using TFA

Accomplishments

Faculty:

• Provided warning time (based on raw data) before unexpected shutdown happens

D. Djurdjanovic, J. Ni

Warning of shutdown based on level of X-axis signal

- · Found method for properly partitioning data
- Determined predictive model for health of mill bit
- Produced CV degradation trends for load data

Decay of mill bit health based on drift of process features

Future Work

- · Finish characterization of mill health
- · Install sensors and begin collecting data on grinder
- Integrate and process data from multiple sensors with various frequency ranges for the grinder project

Sponsors

• This research is supported by General Electric Aviation. My contact at GE is Roger Lindle.

Immune System Engineering for Automotive Systems

Research Assistants/Staff: Shimin Duan D. Djurdjanovic

Objectives

- Develop novel approach to realize "immune systems" functionalities in automated systems.
- Robustly detect abnormal behavior, isolate source, and compensate for negative effects to achieve desired performance in spite of the presence of an anomaly.

An anomaly effects automated system like a virus effects human

Problem Statement

- The goal of the proposed research will be to incorporate the natural immune system functionalities and uniqueness into automotive engine system. There are three primary parts for accomplishing this target:
- Anomaly Detection Agents (ADA-s)
 -Identify the intrusion depicted in the degraded system
 -Isolate the intrusion source by reconfiguring, reconnecting and decomposing detection agents.
- Diagnostic Agents (DA-s)
 -Recognize and describe the anomaly source character if input/ output patterns have been observed in the past.
 -In case input/output patterns have not been seen in the past, create a new DA for recognizing the new anomaly next time.
- Control Agents (CA-s)
 - -Utilize fault characterization from DAs to postulate control laws for restoring the performance of the anomalous subsystem as much as possible.

Proposed immune system operation for an automotive system

Immune System for the Automotive Engine System

Faculty:

J. Ni

Multiplication of ADA-s, DA-s and CA-s in the electronic throttle mechanism

Proposed Research Task and Time Table

The research activity for over a three-year period

Project Leadership and Management

- PI: Dr. Dragan Djurdjanovic, University of Michigan
- Co-PI: Prof. Jun Ni, University of Michigan Kenneth Marko, ETAS Inc