
ABSTRACT 

KONG, JIAN. Infrared-Based Temperature Measurement in Ceramics Grinding and 
Diesel Exhaust Aftertreatment Filters. (Under the direction of Albert J. Shih) 

 

Non-contact remote-sensing radiation thermometry was used in the applications of 

temperature measurement in ceramics grinding and diesel exhaust aftertreatment filters.   

Results of temperature measurements by analysis of the thermal emission spectra 

generated during grinding and subsequently transmitted through partially stabilized zirconia 

workpiece are presented. Portions of emitted visible and near-infrared spectra were collected 

with spectrometers. Source temperatures were determined by fitting the scaled spectrometer 

output spectra to blackbody curves. Simulations showed that the effective temperatures 

determined by this method will be strongly biased toward hot-spot (flash) temperatures, 

which are expected to occur at the grinding grit-workpiece interface. Hot-spot temperatures 

on the order of 3000 K were obtained for grinding with both SiC and diamond wheels. These 

high temperatures modify the grinding process and the phase content of grinding chips. 

The in-situ measurement of the temperature distribution on the cavity wall surface in 

diesel exhaust aftertreatment filters using the infrared radiation thermometry was developed.  

The temperature measurement system consists of a sapphire fiber with 45° angled tip, 

PbS/PbSe two-color sensor, and data conditioning and acquisition device.  A calibration 

technique using the blackbody cavity was developed.  Calibration curves were generated 

between 80 to 400°C, the temperature range of special interest for applications in catalyzed 

diesel exhaust aftertreatment filters.  One-color and two-color radiation thermometry 

methods were both employed to compare and validate temperature measurement results.  The 



     

wall surface temperature of a microwave-heated ceramic filter was measured at four 

locations.  This study demonstrates the feasibility of using the infrared thermometry for non-

contact temperature measurement at a specific region within the cavity of diesel exhaust 

aftertreatment filters.   

Based on the above temperature measurement results, the infrared thermometry 

method was applied to study the temperature distribution in microwave heating of diesel 

particulate filters.  Temperature measurement tests were conducted in integrated multi-

channel fiber optic infrared temperature measurement and microwave heating systems.  The 

silica light-pipes, which are transparent to electromagnetic field, were used to collect the 

infrared radiation from different locations inside filter cavity.  One-color thermometry 

method was implemented to convert the measured radiation into temperatures.  The temporal 

and spatial distributions of three diesel particulate filters heated by microwave were studied.  

Experimental results show the non-uniform heating across the filter.  The interaction between 

catalyst, soot loading, and microwave power varies the heating pattern and temperature 

distribution.  During a 600 s heating period, a 1 kW microwave power setting is able to raise 

the temperatures above 200°C in most area of a catalyzed filter with soot loading.   
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Chapter 1 1 

CHAPTER 1. INTRODUCTION 
 

 

1.1. Background of Radiation Thermometry 

Radiation thermometry is the measurement of an object temperature by quantification 

of the electromagnetic radiation emitted from the object.  It is used to measure the object 

temperature without any physical contact.  Radiation thermometry is a widely used 

temperature measurement method and has been applied in a wide variety of applications [1-

3].  Radiation thermometry exhibits response time shorter than contact sensors and is usually 

employed to measure the temperature of objects that are difficult to reach by contact 

detection due to hostile environments, geometry limitations, and/or safety hazards.  Radiation 

thermometry can also measure the temperature of moving samples or objects kept in a 

vacuum.  

Radiation thermometers measure absolute intensity of the radiation emanating from a 

target surface.  A calibration method is necessary to convert the measured radiation output 

signal, generally in DC voltage, to temperature.  The relationship between the radiance and 

temperature of a blackbody is described by the Planck’s law.  
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where c1L = 1.191×108 W⋅µm4⋅m-2⋅sr-1 and c2 = 1.439×104 µm⋅K are the first and second 

radiation constants and T is the absolute temperature.  Planck’s law of blackbody radiation is 

the foundation of radiation thermometry [4-5].   
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In its most basic form, a thermometer is a spectrometer which records a voltage V(�) 

in response to radiation emitting from a blackbody.  In practice, the target seldom 

approximates a blackbody radiator and the target environment, comprised of its surroundings 

and the atmosphere in its line of sight, is not as well controlled as during the calibration 

process.  The radiant flux exitent from the target surface is due to three processes: emission 

from the non-black target having a spectral emissivity less than unity, reflection if irradiation 

originating from the hotter surroundings and from a participating atmosphere, and absorption 

or emission by atmospheric gases in the sight path.  For this situation, the radiation 

thermometer output will be a signal which, through the calibration algorithm, corresponds to 

the temperature of an equivalent blackbody.  It is evident that the user needs information on 

the surroundings and the environment in order to relate the indicated temperature to the true 

temperature of the target surface.  One of the most important parameters that strongly affects 

the measurement accuracy of radiation thermometers is the target emissivity, which often 

varies with spectral wavelength, temperature, surface property and, in some cases, time [3-5].   

For a variety of different scientific and industrial applications, radiation thermometry 

can be divided into several categories.  According to the number of sampled spectral 

regions/bands, single wavelength/color, two wavelength/color or multi-wavelength radiation 

thermometry are designated.  When thermometers’ response time is a concern, fast radiation 

thermometry is denominated.  When optical fibers are involved in thermal sensing 

applications, fiber optic radiation thermometry can be specified.  When fluorescent radiation 

is used in temperature detection, phosphor thermometry is named.  These topics are covered 

in [4, 6-42].   
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Single wavelength thermometry depends on sensing of the target radiance in a 

specific spectral region to infer the target temperature.  The key problem in single 

wavelength thermometry is to compensate the unknown target emissivity.  Examples are 

presented in [6-11].  Single wavelength thermometry is widely used in the applications when 

the target emissivity is known or easy to acquire.   

Dual wavelength thermometry samples the target radiance in two different spectral 

regions and infers a color temperature and/or emissivity using various algorithms.  In the 

case of gray body target, which means the emissivity is independent of the detected 

wavelength, the temperature can be determined from the ratio of the two signals [3, 12-16].  

Brownson et al. [17] have presented a method for determination of the target temperature and 

emissivity by solving the two detector response equations simultaneously.  Ng [18] also 

demonstrated the working principle of a self calibrating 2-wavelength pyrometer.  The 

pyrometer calibration constant is automatically determined by the pyrometer.  The voltage 

response of detectors at two different wavelengths at many different unknown temperatures 

was analyzed to determine the calibration constants and used to measure temperatures at 

subsequent times.  

The extrapolation of single/dual wavelength temperature provides us with a general 

method for determining temperature with multiple wavelength radiation thermometry.  

Multi-color or multi-wavelength thermometry samples the target radiance in more than two 

different spectral regions and infers the target temperature and/or emissivity through a variety 

of algorithms.  Sampled spectral wavelengths vary from three [4], six [19], eight [20], to full 

spectrum (spectrometer) [21].  More and more complex mathematical models are used to 



Chapter 1 4 

evaluate the temperature and emissivity, varying from linear mathematical correction to 

artificial neural network estimation [4, 22-26].  A review has been given by Sun et al. [27].   

Fast radiation thermometry is used in the applications for measuring high-speed 

transient temperature (e.g. laser heating of single micro particles [28]).  The maximum time 

resolution of a thermometer is genrally limited by the available technical devices such as 

detectors, amplifiers, and data acquisition [29].  Since there is continuous improvement in 

these sectors the maximum time resolution of pyrometers has permanently improved [29-30].  

In 1976, Ruffino [31] defines high-speed pyrometry as a temperature measurement with a 

time resolution of the order of a millisecond or less [29].  After two decades, in 1996, Xu et 

al. [32] developed a monochromatic nanosecond time resolution pyrometer.  They mentioned 

that this was the first time that a nanosecond pyrometer had been described in the literature 

[29].  A review has been summarized by Mueller et al. [29].  

In the context of thermal sensing, fiber optic temperature sensing system dated mostly 

from the mid to late 1970’s.  Commercial fabrication began in the early 1980’s.  Fiber optics 

for sensor systems can be useful in the presence of a high electrical, magnetic or 

electromagnetic noise background.  The small size of the fiber and its electrical, chemical 

and thermal inertness allow semi-permanent location of the sensor deep inside complex 

equipment and thereby provide access to difficult to address locations where temperature 

may be of interest [33].  At present, it has been widely recognized that various types of 

sensor can be advantageously made by using optical fiber either as the medium for data 

transmission or as the sensor transducer, or both.  Interested reader can consult the recent 

publications in the literature [8, 33-37].   
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Phosphor thermometry utilizes the thermal dependence of phosphor fluorescence to 

provide for a non-contact, emissivity-independent, optical alternative to other more 

conventional techniques.  Thermographic phosphors are relatively inert, ceramics materials 

activated with a rare material which emit light with a distinctive spectral distribution when 

suitably excited by an energy source such as an electron beam, x-ray source, or ultraviolet 

light.  If the source is pulsed, then the fluorescence emitted will persist for a characteristic 

duration that is temperature dependent.  Different spectral components from the same 

material may even exhibit different temperature responses.  These changes are independent 

of the emissivity of the surface to which the fluorescing material is attached [38, 39].  This 

unique property makes the phosphor thermometry the only useful approach in many 

applications.  Examples are presented in [40-42].  A review, which includes more than two 

hundred references, has been given by Allison et al. [39].   

 

1.2. Overview 

In this study, non-contact remote-sensing radiation thermometry was used in the 

applications of temperature measurement in ceramics grinding and diesel exhaust 

aftertreatment filters.  Different radiometric methods, including spectrometer (multi-

wavelength), one-color (single wavelength) and two-color (two wavelength) methods, were 

developed for measuring surface temperatures in the two industrial applications.  Employing 

the spectrometer method to measure the grit-workpiece interface temperatures in magnesia-

partially-stabilized zirconia (MgO-PSZ) grinding is described in Chapter 2.  Both one-color 

and two-color methods for measuring temperature distribution in diesel exhaust 

aftertreatment filters are outlined in Chapter 3 and 4.  Partial results have also been covered 

in three journal papers [43 −45].   
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Grinding temperature measurements in magnesia-partially-stabilized zirconia using 

infrared spectrometry is summarized in Chapter 2 and [43].  Non-contact infrared-radiation 

thermometry methods for grinding temperature measurement and thermal effect in ceramics 

grinding are first reviewed.  A brief discussion is given of the phase transformation during 

MgO-PSZ grinding and the outstanding performance of SiC wheels in PSZ grinding.  The 

thermal hypothesis of high temperature generated at the grit-workpiece interface helping 

efficient grinding of PSZ is discussed in terms of the thermal conductivity analysis of 

zirconia, SiC and diamond and the X-ray diffraction observations of zirconia phase 

transformation.  A set of experiments using the spectrometer method to measure grinding 

temperature has been described and, the temperature analysis method of spectral blackbody 

curve matching has been presented.  The measured high temperature results are outlined and 

discussed.  Simulation calculations for understanding the averaging process of the grinding 

hot-spot temperature and a cooler surface background temperature are also discussed. 

The development of diesel exhaust aftertreatment technology requires accurate 

temperature profile data on the inner wall surface of diesel exhaust aftertreatment filters.  As 

outlined in Chapter 3 and [44-45], a fiber optic radiation thermometry system was developed 

for in-situ measurement of the temperature distribution on the channel wall surface in diesel 

exhaust aftertreatment filters.  Components and features of the system, which include the 

optical fiber, goniometric characteristics of the fiber tip, and infrared sensor, are first 

introduced.  The temperature measurement strategy using the one-color and two-color 

methods and sensor calibration are then presented.  Results of the temperature measurement 

experiments conducted in a microwave heated filter are analyzed and compared.  The 



Chapter 1 7 

parasitic heating effect on the temperature measurement results caused by high temperature 

filter wall surface in contact with the fiber body is also discussed.   

In Chapter 4, applying infrared thermometry to study the temperature distribution in 

microwave heating of diesel particulate filters is presented.  Temperature measurement tests 

were conducted in integrated multi-channel fiber optic infrared temperature measurement and 

microwave heating systems.  Silica light-pipes were employed to collect emitted radiation 

from the inside wall surfaces of Diesel Particulate Filters (DPFs).  The radiation from a small 

and specific region of the inner filter wall surface can be detected.  Temperature is calculated 

by a one-color infrared transducer (Mikron M680).  Components and features of the multi-

channel fiber optic temperature measurement and microwave heating systems are first 

introduced.  Temperature measurement calibration and validation of filter wall opacity, use 

of one-color thermometry method, and the filter heating repeatability are subsequently 

presented.  Experimental setup of filter heating and temperature measurement at 36 locations 

in a DPF is described.  Results from the in-situ temperature measurement experiments 

performed on three DPFs are then analyzed and discussed.   
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