ABSTRACT

BAKKAL, MUSTAFA. Machining of Bulk Metallic Glass. (Under the direction of Dr. Albert J. Shih)

The turning and drilling of Zr_{52.5}Ti₅Cu_{17.9}Ni_{14.6}Al₁₀ metallic glass (BMG) are evaluated in this study. The mechanics of machining and chip formation and characterization are investigated. In the lathe turning of BMG, above a threshold cutting speed, the low thermal conductivity of BMG leads to chip temperatures high enough to cause the chip oxidation and associated light emission. The high temperature produced by this exothermic chemical reaction causes crystallization within the chips. Oxide layer, amorphous region, fully crystalline region, and crystalline-amorphous transition region are observed in the cross-section of the chips. The x-ray diffraction peaks match the pattern for monoclinic ZrO₂. Turning chips morphology suggests that increasing amounts of viscous flow control the chip-removal process. Moreover, viscous flow and crystallization can occur during the machining of the bulk metallic glass, even under the high temperature gradient and strain rate. For the BMG chip without light emission, the serrated chip with adiabatic shear band and void formation was observed. High cutting speed significantly reduced the forces for BMG machining due to thermal softening. Roughness of machined BMG surfaces is generally better than that of Al6061-T6 and SS304. Tool wear is a problem for BMG turning. Chipping and thermal softening on the lathe tool cutting edges can be observed. Drilling of BMG shows that holes with precision geometry and good surface roughness can be efficiently produced in BMG using the high speed steel and WC-Co drills at spindle speed that does not exceed the limit for chip light emission. Morphology of BMG drilling chip are classified and analyzed. The thermal conductivity of tool material and cutting speed are concluded as two critical factors that triggered the chip exothermic oxidation and light emission. The chip light emission has profound impact on the drill wear, as shown by the experimentally measured thrust force and torque. This study concludes the precision machining of BMG is possible with the selection of feasible tools and process parameters.

MACHINING OF BULK METALLIC GLASS

by MUSTAFA BAKKAL

A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Ph.D.

MECHANICAL ENGINEERING

Raleigh, North Carolina

2004

APPROVED BY:

Chair of Advisory Committee

Co-Chair of Advisory Committee

DEDICATION

To Aybike

BIOGRAPHY

Mustafa Bakkal was born on November 25, 1974 in Bilecik, Turkey. He grew up in Bilecik, Ankara and Istanbul. Mustafa is the only son of Fatma and Ramazan Bakkal and brother of Bilge and Aybike Bakkal. He was admitted to the Istanbul Technical University in 1993. He received his Bachelor's degree and entered the graduate school in 1997. During his master research, he worked on "Effect of iron nitriding on austempered AISI 8660 steel" work with the guidance of Professor Mehmet Demirkol. He awarded with Turkish Higher Education Council scholarship in August 2000 and joined California Institute of Technology. After 3 semester course work in Applied Mechanics under supervision of Professor Guru Ravichandran, he received another Master's degree in Applied Mechanics. He joined the Ph.D. program in North Carolina State University in August 2001. He has spent the last three years pursuing a Doctoral degree in Mechanical Engineering at North Carolina State University.

ACKNOWLEDGMENTS

I would like to first thank my advisor, Dr. Albert J. Shih. I have learned and improved a lot with your guidance and help in the past three years. Thank you for your efforts, time, and energy and give my best regards to you and your family.

I would like to take this opportunity to thank my advisory committee members, Dr. Ronald Scattergood, Dr. Carl Koch, Dr. Jeffrey Eischen, and Dr. Eric Klang for your guidance and help. Portion of this research was sponsored by the User Program in the High Temperature Material Lab, Oak Ridge National Lab and the Heavy Vehicle Propulsion Systems Materials Program, Office of Transportation Technologies, US Department of Energy.

Thanks to Dr. C.T. Liu, Samuel McSpadden, Dr. Edgar Lara-Curzio, Dr. Laura Riester, Dr. Lawrence F. Allard, Dorothy Coffey, Randy Pattern, Jason Braden, Edward Kenik, Cecil Carmichael, and Dr. Jun Qu at Oak Ridge National Lab who assisted in this research. Thanks also to colleagues Scott Miller, Jie Luo, Ramesh Guduru at NCSU and Can Aydiner at Caltech.

Very special thanks to my roommates, Omer Berkalp, Ege Yildizoglu, Fatih Haciomeroglu, Engin Murat Reis and Bugrahan Akben and to my friends Pejman Golabi, Serkan Inceoglu, Alper-Nadire Gokcehan and Sebnem Ahiska for their patience, and support. Thank you for the laughter, smiles and friendship. I wish you best luck in the rest of your lives.

One thing for sure, I can not thank enough my parents and all my family for their constant encouragement and belief in me. You have always been unbelievable. You were my biggest support in this adventure. Finally, I would like to express my very special thanks to my sister Bilge, who has always been my relief in my most difficult times.

TABLE OF CONTENTS

LIS	ST OF TABLES	vii
LIS	ST OF FIGURES	ix
1.	INTRODUCTION	1
	1.1. Background of Bulk Metallic Glass (BMG)1.2. OverviewReferences	1 6 8
2.	MACHINING OF A Zr–Ti–Al–Cu–Ni METALLIC GLASS 2.1. Introduction	9 9
	 2.2. Experimental Procedure	10 11 20 20
3.	OXIDATION AND CRYSTALLIZATION OF ZR-BASED BULK METALLIC GLASS DUE TO MACHINING 3.1. Introduction	22 22 24
	 3.2.1. Machining	24 25 26
	 3.2.4. X-Ray Diffraction and Microscopy Analysis 3.3. BMG Chips Flash Temperature Measurement Using Infrared Thermometry 3.4. Analytical Prediction of Chips Temperature	26 27 32 33
	 3.6. Crystallization Analysis	35 35 37 41
4.	CHIP FORMATION, CUTTING FORCES, AND TOOL WEAR IN TURNING (ZR-BASED BULK METALLIC GLASS	42 OF 44
	4.1. Introduction4.2. Experimental Setup and Design4.2.1. Turning Test Setup and Measurements	44 46 46

	4.2.2. Experiment Design	48
	4.3. BMG Chip Light Emission and Morphology	48
	4.4. Cutting Forces and Discussions	55
	4.4.1. Analytical Analysis of Cutting Forces and Stresses	55
	4.4.2. Cutting Force Results and Discussions	57
	4.4.2.1. Cutting and Feed Forces	57
	4.4.2.2. Specific Cutting Energy	59
	4.4.2.3. Normal and Friction Force on the Rake Face and Coefficient of Friction	65
	4.4.2.4. Shear Plane Angle and Average Normal and Shear Stress on the Shear Plane	lane
		65
	4.5. Surface Roughness Analysis	65
	4.6. Tool Wear	65
	4.7. Concluding Remarks	66
	References	67
5.	LIGHT EMISSION, CHIP MORPHOLOGY, AND BURR FORMATION IN	
	DRILLING OF BULK METALLIC GLASS	70
	5.1 Introduction	70
	5.2 Experimental Setup and Design	70
	5.2.1 Drilling Test Setup and Measurements	71
	5.2.1. Drining_rest Setup and Weasurements	71
	5.2.2. Experiment design	75
	5.5. Chip Light Emission	75 77
	5.5 Fracture Surface Under Quick Ston Condition	77 85
	5.6 Burr Formation	85 88
	5.0. Duri Formation	00 02
	Pafarances	92
	References	95
6.	THRUST FORCE, TORQUE, AND TOOL WEAR IN BULK METALLIC GLA	SS94
	6.1 Introduction	04
	6.1. Introduction	94
	6.2. Experimental Setup and Design	95
	6.2.1. Drilling test setup and measurements	95
	6.2.2. Experiment Design	90
	6.3. Inrust Force, Torque, and Tool Wear for BMG Drilling with Light Emission	19/
	6.4. Inrust Force and Torque for BMG Drilling with No Light Emission	102
	6.5. 1001 wear for BMG Drilling with No Light Emission	107/
	6.6. Concluding Remarks	
	Keterences	111
7	CONCLUSIONS	113
· •		

LIST OF TABLES

Chapter 1	
Table 1.1.	Critical cooling rates and section thicknesses for glass formation of bulk
Chapter 2	glass forming anoys in chronological order4
Table 2.1.	Nano-indentation test results

Chapter 3

Table 3.1.	Comparison of properties of Zr-based bulk metallic glass (BMG) and	
	other metals	22
Table 3.2.	Temperature measurement results for machining BMG	30

Chapter 4

Table 4.1.	Properties of three work-materials	45
Table 4.2.	Four cutting tools used in the turning experiment. (tool holder: Secol	[SO
	SCLCL/ANSI 1212F09, insert code: ISO 09T304/ANSI 3251, all ins	erts
	have 0.4 mm nose radius).	47
Table 4.3.	Light emission and chip surface oxidation in BMG machining	49
Table 4.4.	Cutting and feed forces and specific cutting energy	57
Table 4.5.	Normal and friction force and coefficient of friction on rake plane	60
Table 4.6.	Average arithmetic surface roughness.	61

Chapter 5

Table 5.1.	Properties of two tool materials.	.72
Table 5.2.	BMG drilling process parameters, light emission, chip formation, burr	
	quality and length of heat affected zone in Exps. I to VII	.74

Chapter 6

Page

LIST OF FIGURES

Fig. 1.1.	Zr- based BMG button and ingot prepared by arc melting and drop casting in inert gas atmosphere	5
Chapter 2		
Fig. 2.1.	(a) Schematic for lathe turning. The chip profile is unchanged when the depth of-cut d feed/rev f and tip radius r are fixed. (b) Light emission from tool-	-
	workpiece contact area and chip for a cutting speed of 1.52 m/s1	1
Fig. 2.2.	SEM micrographs of chips at the (relative) magnification scales indicated.	
	Cutting speeds: (a) 0.38 m/s. (b) 0.76 m/s. (c) 1.52 m/s1	3
Fig. 2.3.	Close-up view of inset A in Fig. 2a (bottom frame)1	4
Fig. 2.4.	SEM micrograph of a cross-section of a chip cut at 1.52 m/s. An oxide	
e	layer (O) surrounds the chip. Contrast is due to secondary electrons (SE).1	6
Fig. 2.5.	SEM micrograph of a cross-section of a chip cut at 1.52 m/s . (a) 400x, (b)	
e	1000x, (c) 2000x. Contrast is due to back-scattered secondary electrons	
	(BSE)	7
Fig. 2.6.	Relative x-ray intensity vs. diffraction angle (2 θ) for the cases indicated1	9

Chapter 3

Fig. 3.1.	(a) Configuration for BMG turning experimental setup, (b) light emission from
	the chips and tool-workpiece contact area at 1.54 m/s cutting speed, and (c)
	close-up view of the optical fiber and fiber tip cover for temperature
	measurement
Fig. 3.2.	Temperature measurement data plots at 0.76 and 1.52 m/s cutting speeds.
	(a) and (b) the measured spectrometer output, $R(\lambda)$ vs. λ .(c) and (d) the
	least-squares fit (solid-line) and calculated temperature
Fig. 3.3.	X-ray diffraction analysis results for as-received, machined surface, and chips
	of BMG
Fig. 3.4.	X-ray diffraction analysis of the chips cut at 0.76 and 1.52 m/s
Fig. 3.5.	Optical micrographs of polished cross-section of BMG chips machined at
	(a) 0.38 m/s and (b) 1.52 m/s cutting speed (with oxide layer)
Fig. 3.6.	Optical micrographs of the polished and etched cross-section of BMG
	chips cut at 1.52 m/s, (a) crystallization incipient near the oxide layer, (b)
	transition from crystalline (left) to amorphous (right) regions, (c) dendritic
	crystalline branch and the maximum cooling rate directions indicated by
	arrows, and (d) fully crystalline region

Page

Fig. 3.7.	Field emission gun SEM micrographs of the chips cross-section with both	h
	eutectic and amorphous regions, (a) contrast adjusted to show the oxide	
	layer surrounding the chips, (O) (b) contrast adjusted to show the inside	
	crystalline and amorphous regions, (G) represents the gray leaf-shape	
	crystalline region, and (c) close-up view of the box in (b) with the	
	amorphous (A) to eutectic (E) crystalline transition.	.39

Chapter 4

Fig. 4.1.	Lathe turning experiment (a) the setup with dynamometer, cutting tool, a	nd
	workpiece and (b) light emission from machining of BMG.	.46
Fig. 4.2.	SEM micrographs of BMG, Al6061, and SS304 chips machined at 1.52 m/s	
	cutting speed	.50
Fig. 4.3.	Sample cutting and feed forces of BMG machined by the PCD tool and	
	SS304 machined by PCBN tool at 1.52 m/s cutting speed.	.56
Fig. 4.4.	The WC-CVD tool machined surfaces at 0.76 m/s cutting speed.	.64
Fig. 4.5.	BMG chip welded on the WC-CVD tool.	.65
Fig. 4.6.	PCBN tool after machining the BMG.	.65
Fig. 4.7.	PCD tool after machining, in sequence, BMG, Al6061 and SS304	.66

Chapter 5

Fig. 5.1.	Experimental setup: (a) configuration of the drilling test and (b) schematic representation of the disk workpiece hold by the set screw inside a support
	plate
Fig. 5.2.	The light emission in drilling of BMG (Exp. III)77
Fig. 5.3.	Powder (P) type BMG chip (Exp. III with 2.5 mm/s feed rate): (a) broken
	chip covered with thick oxide layer and (b) detailed view of the box in (a)
	with the brittle fracture surface
Fig. 5.4.	Optical micrographs of the polished and etched cross-section of BMG
	chips associated with light emission (Exp. III, 10 mm/s feed rate): (a) chip
	with oxide layer and amorphous core, (b) chip with oxide layer and fully
	crystalline core and (c) chip with oxide layer and mixture of amorphous
	and dendritic crystalline regions (arrows represent the direction of
	maximum cooling rate)
Fig. 5.5.	Short ribbon (SR) and long ribbon (LR) BMG chip morphology in Exp. I:
-	(a) and (b) 2.5 mm/s, (c) 5 mm/s and (d) 10 mm/s feed rate80

Fig. 5.6.	Long ribbon (LR) BMG chip in Exp. VI (10 mm/s feed rate): (a) general view of
	chip and (b) close-up view of the box in (a)
Fig. 5.7.	The long ribbon tangled (LRT) BMG chip for Exp. II at 10000 rpm: (a)
	overview and (b) close-up view of oxidized chip surface
Fig. 5.8.	Long spiral (LS) BMG chip in Exp. VII: (a) general view of the long chip, (b)
	close-up view of the box in (a), (c) close-up view of the box in (b) with serrated
	chip surface and (d) spacing between shear band and the molten debris on the chip
	surface
F1g. 5.9.	BMG chips in Exp. IV: (a) and (b) 2.5 mm/s, (c) 5 mm/s and (d) 10 mm/s
	feed rate
Fig. 5.10.	Fan shape (F) SS304 chip in Exp. V: (a) general view of chips and (b) close up
	view of the box in (a)
Fig. 5.11.	SEM micrograph of the blind hole produced by broken drill or quick stop
	condition: (a) overall view of the blind hole, (b) close-up view of box in (a)
	near the center region, (c) close-up view of box in (b) below the center
	region and (d) close-up view of the box in (c)86
Fig. 5.12.	Entry burr of in BMG drilled by HSS in Exp. I: (a) 2.5 mm/s, (b) 5 mm/s and (c)
	10 mm/s feed rate. (hole #1 in the drilling sequence)
Fig. 5.13.	Entry burr in BMG drilled by WC-Co in Exp. IV: (a) 2.5 mm/s, (b) 5 mm/s, and
	(c) 10 mm/s feed rate. (hole #1 in the drilling sequence)
Fig. 5.14.	Entry burr of the BMG sample in Exp. II at 10000 rpm spindle speed with
	constant light emission and LRT chip morphology (number indicated the sequence
	of three holes drilled): (a) overview of three holes and (b) close-up view of third
	hole
Fig. 5.15.	Entry burr of 2 mm diameter holes drilled in Exp. III at 10 mm/s feed rate: (a)
	overview of the four holes (number indicated the sequence of drilling), (b) close-
	up view of hole #3 and (c) close-up view of hole #4
Fig. 5.16.	Crown-shape exit burr formation in BMG drilled by HSS in Exp. I at 10 mm/s
	teed rate: (a) general view of exit burr forms (number indicated the sequence of
	seven holes drilled) and (b) close-up view of the crown shaped burr in hole #6 91

Chapter 6

Fig. 6.1.	SEM micrographs of the 2 mm HSS tool in Exp. III with 10 mm/min feed	
	rate after drilling four BMG holes: (a) overview of the drill with severe	
	plastic deformation and the margin wear and (b) close-up view of the drill	
	tip. (M: margin wear)9) 7
Fig. 6.2.	Thrust force and torque of Exp. III at 10 mm/min	
	feed rate: (a) thrust force and (b) torque) 8
Fig. 6.3.	. Wear of HSS drill: (a) and (b) Exp. II at 10,000 rpm spindle speed and	
	1.25 mm/min feed rate with periodically continuous light emission9) 9
Fig. 6.4.	Spindle speed effect on the thrust force and torque in Exp. II10)0

Fig. 6.5.	Effect of low spindle speed on the build-up work-material on the cutting
	and margin edges: (a) drill broke at 2,000 rpm spindle speed and 1.25
	mm/min feed rate and (b) close-up view of the material build-up101
Fig. 6.6.	Effects of work-material, tool-material, and hole number for drilling BMG
	and SS304 at 5 mm/min and 10,000 rpm (Exps. I, IV, and V)104
Fig. 6.7.	The drill location to extract representative thrust force and torque data: (a)
	initial contact location and (b) full engagement of the conical drill surface
	and workpiece105
Fig. 6.8.	Feed rate effect on thrust force and torque values on BMG drilling in Exp. I
	(solid lines) and IV (dashed lines)106
Fig. 6.9.	Flank wear in HSS drilling of BMG (Exp. I, 5 mm/min feed rate): (a) new
	tool, (b) after first hole, (c) after third hole, (d) after fifth hole, and (e) after
	seventh hole. 108
Fig. 6.10.	Margin wear in HSS drilling of BMG (Exp. I, 5 mm/min feed rate): (a)
-	after first hole, (b) after third hole, (c) after fifth hole, and (d) after seventh
	hole