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Chapter 1 

Introduction 

 

 

1.1.  Research motivations and goals 

Automotive manufacturers are continually challenged by the needs to improve 

product quality and reduce warranty cost.  Effective measurement methods are required 

to assure the precision and accuracy of component manufacturing, assembly, and testing.  

For automobile bodies and sub-assemblies, the optical measurement technologies have 

revolutionized the dimensional quality monitoring and control in the past two decades.  

The optical measurement systems enable the in-line, 100% inspection and use of 

advanced statistical analysis methods for root cause diagnostics.  Such success has not yet 

been realized in the automotive powertrain and wheel assembly.   

The automotive powertrain, which includes the engine, engine accessories, 

transmissions, differentials, and axles, generates and transmits powers to the wheel 

assembly.  Powertrain and wheel assembly components have more stringent dimensional 

and geometrical form tolerances compared with body parts to meet the performance 

requirements.  Five examples are presented in Fig. 1.1 to illustrate the powertrain and 

wheel assembly components.  Typical tolerance specifications are discussed as following.   

A typical V6 internal combustion engine head is shown in Fig. 1.1(a).  The 

combustion deck surface on the engine head is a representative feature for precision 

powertrain components.  The flatness specifications of this combustion deck surface are 

150 µm along the 400 mm length, 100 µm across the 250 mm width, and 25 µm over any 

25 mm x 25 mm surface area.  Fig. 1.1(b) shows a hydraulic valve body for the automatic 

transmission.  The part has the flatness specifications of 50 µm over the 200 mm x 100 



 2

mm surface and 25 µm across any 80 mm line.  The wheel hub, as shown in Fig. 1.1(c), 

transmits power from the axle to wheel and supports the vehicle.  The flatness 

specification of the hub surface, as marked by A, is from 30 to 50 µm.  Figure 1.1(d) 

shows a rotor for disk brake.  The surface, as marked by B on the rotor in Fig. 1.1(d), 

contacts the surface A on the hub in the wheel assembly.  The brake pads contact the 

surface, marked by C on the rotor in Fig. 1.1(d).  The runout specifications of surface C 

relative to the datum surface A of the rotor is usually 50 µm or less.  This specification is 

critical to reduce the vehicle noise, vibration, and harshness (NVH) and improve 

drivability.   

A Coordinate Measurement Machine (CMM) is a flexible and accurate contact-

based measurement system which has been extensively used for the inspection of 

automotive powertrain components.  However, CMMs are not feasible for the in-line 

inspection desired by transfer line production applications due to the extended 

measurement cycle time and lack of the full surface measurement capability.  Some 

critical regions may be neglected.  This can introduce the leakage problem when the 

engine head is assembled to the engine block.  Further quality control and root cause 

diagnostics is also difficult from the incomplete data measured by CMMs.   

The 3D non-contact optical measurement technologies have been widely utilized 

in quality inspection [1], reverse engineering [2], remote sensing [3], and robot guidance 

[4].  In recent years, new optical hardware and software developments have further 

advanced the accuracy and reduced the cost of 3D optical measurement systems.  Optical 

measurement systems have been successfully applied in the automotive quality control 

and process diagnosis of body manufacturing and assembly.   

Figure 1.2 shows the measurement size and form tolerance requirements for 

different automotive components [1].  The powertrain and wheel assembly components, 

marked in boxes, have the form tolerances from 10 to 100 µm in the measurement 

volume less than 0.1 m3.  Extensive research efforts [5-8] have been dedicated to the 

applications of non-contact optical measurements for powertrain components.  There is 

still a gap before widespread and practical in-line utilization by industry due to the 

following three reasons.  First, a wide variety of surface features, surface textures and 
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finish, and surface reflectance exist for the powertrain components.  This imposes a great 

challenge on precision optical measurement systems.  Second, the performance of optical 

measurements usually depends on the environment conditions.  An optical system with 

good performance in laboratory may not function well due to the vibration, thermal 

deviation, and environment illumination disturbance in the production line.  Third, the 

measurement speed needs further improvement to satisfy the in-line measurement 

requirements.   

This research is motivated by the lack of effective and efficient 3D non-contact 

optical measurement methods for precision automotive components.  The 3D µm-level 

accurate optical systems, which will be capable of the in-line, full surface precision 

measurement, are targeted in this research.   

 

1.2.  Laser holographic interferometry for powertrain components measurement 

A wide variety of 3D optical measurement methods are available.  Based on the 

principles of the data extraction for 3D dimensional and geometrical form measurement, 

the 3D optical measurement methods can be categorized as: stereovision [9], 

interferometry [10,11], structured lighting [12,13], laser triangulation [14], Moiré fringe 

[15-17], focus detection [18,19], time-of-flight [20], and laser speckle pattern sectioning 

[21].  A comparison matrix of six 3D measurement systems is illustrated in Appendix A.   

The laser holographic interferometry method is demonstrated to have the potential 

capabilities for in-line, full surface precision measurement of powertrain and wheel 

assembly components.  The basic principles and characteristics of the laser holographic 

interferometry methods are described as following.  The system principle, configurations, 

and the performance evaluation are discussed in detail in Appendix B.   

Laser holographic interferometry extracts the 3D profile of an object by 

identifying the phase of the light wave which is reflected from the object surface and 

carries the height information of the object.  The laser holographic interferometer usually 

uses a beam splitter to separate the laser into two separate beams, the reference and the 

carrier beams of the same wavelength.  The carrier beam is directed onto the object 
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surface and the phase is modulated by the 3D object profile.  The modulated carrier beam 

interferes with the reference beam and generates the hologram containing the 3D profile 

information of the object surface.  By identifying the phase difference at each pixel in the 

hologram, the 3D profile of the object can be extracted.   

The laser holographic interferometry for 3D surface profile measurement has 

three advantages.  (1) High accuracy.  Combined with phase shifting analysis, 

interferometric methods can have the accuracy of 1/100 of a fringe [22].  For a typical 

system, the accuracy of the height measurement can reach 0.50 µm for a 300 mm x 300 

mm field of view (FOV) with the height measurement range up to 17 mm [3].  The lateral 

resolution and range of phase shifting interferometric instruments depend on the CCD 

pixel spacing and the magnification of the objective.  (2) No shadowing or occlusion.  

Shadowing occurs when the object cannot be illuminated but is visible to the sensor.  

Occlusion occurs when the object is illuminated but invisible to the sensor.  Either 

shadowing or occlusion does not exist in the laser holographic interferometry because the 

object is illuminated and viewed from the same direction.  (3) No moving parts.  The 3D 

image of the entire field of view is generated without scanning.  With all parts fixed, the 

system has high reliability and repeatability.   

There are three limitations for the current laser holographic interferometry method.  

First, the measurement area is limited by the system FOV and no hologram registration 

method is available for the measurement of part larger than the system FOV.  Second, the 

height measurement range is limited by the optical configurations.  And the height 

measurement accuracy and resolution will decrease if the height measurement range 

increases using the wavelength-tuning technology.  Third, difficulties are usually 

expected for the precision measurement of round and more generally free-form specular 

surfaces due to the large surface curvature which makes insufficient modulated light 

reflected back to generate the hologram.   

 

1.3.  Feasibility study of 3D optical systems for engine head measurement 

The CMM, laser holographic interferometry, and stereovision methods are 

compared to identify the feasibility for powertrain component measurement.  The 
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combustion deck surface of a V6 engine head, as shown in Fig. 1.1(a), is applied as an 

example.  Figure 1.3 shows the top view of the combustion deck surface.   

The flatness measurement results using the CMM, laser holographic 

interferometry and stereovision methods are shown in Fig. 1.4.  Figure 1.4(a) shows the 

measurement results using a Zeiss CMM, model UPMC CARAT 850/1200 with a 

scanning probe.  The length (size) measurement accuracy of this CMM is 0.7 + L/600 µm 

within the 1 m3 measurement volume, where L is the length or size of the part in mm.  

And the scanning probing error is 1.8 µm for 88 sec.  Therefore the measurement result 

of this CMM can be used as the target value.  Figure 1.4(b) shows the measurement result 

of the laser holographic interferometer.  The FOV of this system is 300 mm x 300 mm 

and only a portion of the entire combustion deck surface is measured, as shown in Fig. 

1.4(b).  The stereovision measurement is shown in Fig. 1.4(c).  A total of 21 3D images 

are combined to represent the whole surface.  Instead of the line data in CMM, the full 

surface area data is obtained for flatness characterization using the stereovision system.   

A line is marked at corresponding locations of the combustion deck surface in 

Figs. 1.4(a), 1.4(b), and 1.4(c).  The surface height deviations across the line for the 

CMM, laser holographic interferometry, and stereovision are all around 15 µm.  This 

indicates that similar trends are obtained by the laser holographic interferometry and 

stereovision compared to the CMM measurement result.  The standard deviations of the 

data points measured using CMM, laser holographic interferometry, and stereovision are 

24.5, 24.8, and 17.4 µm, respectively.  This shows the potential of the laser holographic 

interferometry for precision powertrain measurements.  This is a preliminary result and 

further detailed investigation is necessary.   

 

1.4.  Overview of research 

The objective of this dissertation is to develop a 3D non-contact optical system 

based on laser holographic interferometry with enhanced performance for the in-line, full 

surface, and µm-level precision measurement of automotive components, such as engine 
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heads and blocks, automatic transmission valve bodies, wheel hubs and rotors, and 

precision journals.  Following research issues are studied in this dissertation.   

In Chapter 2, a hologram registration method is developed to enable the laser 

holographic interferometry for the precision measurement of objects larger than the FOV.  

The performance of the developed method is evaluated by comparing the registered and 

standard measurements of the same hub surface.  The combustion engine head deck 

surface is measured by CMM and the laser holographic interferometry with the hologram 

registration method to verify the developed method.   

In Chapter 3, a phase unwrapping method is developed to mathematically increase 

the height measurement range of the laser holographic interferometry while maintaining 

the same level of accuracy and resolution.  Three approaches, including the masking and 

recovery, dynamic segmentation, and phase adjustment for pixels in thin boundary 

regions, are developed to effectively avoid the divergence problem of boundary pixels.  

An automatic transmission valve body is applied as an example of laterally discontinuous 

surfaces to verify this method.   

In Chapter 4, a mathematical method is developed to utilize the laser holographic 

interferometry with customized optical and mechanical configurations for flexible and 

full surface measurement of cylinders with variable diameters.  Simulations are 

conducted to verify the capability of the developed method.  The experiment is performed 

to measure the master cylinder with negligible cylindricity errors and the practical 

feasibility of the method is demonstrated.   

In Chapter 5, the contributions of this research are specified in the conclusions 

and the future work is identified in two areas.  First is to further improve the performance 

of the cylindricity measurement with the laser holographic interferometry system.  An 

effective calibration method of the aspherical cylindrical lens with minimum aberrations 

should be developed.  More robust and efficient optimization methods shall be explored 

to reach a more reliable estimation of the system configuration parameters.  Second is to 

develop a more comprehensive method to quantitatively analyze the error flows starting 

from each measured points to the final evaluated flatness result for the high definition 
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measurement system.  This method will be extended to other complicated geometrical 

forms such as cylinder and sphere.   
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Fig. 1.1. Examples of automotive powertrain and wheel assembly components: (a) engine 
head, (b) automatic transmission valve body, (c) wheel hub, and (d) wheel rotor. 
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Fig. 1.2. Measurement size and tolerance requirement for automotive components. [1] 
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Fig. 1.3.  Top view of a V6 engine head combustion deck surface.   

 

 

 

 

       
 (a) (b) (c) 

Fig. 1.4.  Flatness measurement results by: (a) Zeiss CMM, model UPMC CARAT 
850/1200 with a scanning probe, (b) laser holographic interferometer Coherix Shapix 

1000, and (c) stereovision system CogniTens Optigo 200. 
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Chapter 2 

Hologram Registration for 3D Precision Holographic Interferometry Measurement 

 

 

2.1.  Introduction 

The limited size of FOV is a constraint in the current laser holographic 

interferometer for precision measurement of large objects, such as the internal 

combustion engine head combustion deck surfaces and the automatic transmission valve 

bodies.  Increasing the dimensions of optical mirrors in the interferometer to enlarge the 

measurement FOV is possible but cost prohibited.  The goal of this research is to develop 

a hologram registration method as a more practical alternative to enable the laser 

holographic interferometry measurement of objects larger than the FOV.   

Several 3D image registration methods have been developed.  VanderLugt [23] 

and Kim et al. [24,25] applied the 3D pattern recognition, Dias et al. [26] fused the range 

and intensity data of the image, and Hsu et al. [27,28] extracted and matched the edge 

and surface features for hologram registration.  However, the hologram registration 

method is still lacking.   

This study develops a hologram registration method to enable laser holographic 

interferometry for the precision measurement of large objects.  The mathematical 

procedures for hologram registration are discussed in Sec. 2.2.  In Sec. 2.3, the accuracy 

of hologram registration is evaluated using two examples and this method is validated.   
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2.2.  Hologram registration 

The hologram registration method is developed to enable the laser holographic 

interferometry for measuring objects larger than the FOV.  Traditionally, targets have 

been used for image registration in 3D optical measurement [29,30].  The approach 

proposed in this study eliminates the use of targets and simplifies the measurement 

procedure for image registration.   

The procedures to register two holographic measurements are shown in Fig. 2.1.  

The FOV contains W rows and W columns of measurement points, which correspond to 

pixels in the CCD camera.  The distance between adjacent rows or columns of points in 

FOV is p.  The size of the FOV is pW x pW, as illustrated in Fig. 2.1(a).  Mathematically, 

the measured data in FOV is represented by a W x W matrix.  Each element in the matrix 

is a complex number.  The magnitude and angle of the complex number represent the 

light intensity I and the phase difference ∆ϕ, respectively, of a measurement point in the 

FOV.   

The length of the measurement object is larger than the width pW of the FOV, as 

shown in Fig. 2.1.  Two measurements, marked as Measurement A in Fig. 2.1(a) and 

Measurement B in Fig. 2.1(b), are conducted.  An overlapped region exists between the 

Measurements A and B.   

A procedure called masking is applied to extract the region of the measurement 

object in FOV for data analysis.  The measurement object in Fig. 2.1 is a rectangle with 

three holes.  The masking procedure eliminates the data points outside the measurement 

object area.  The region after masking, called the Unmasked Region, is marked by 

hatched lines in Fig. 2.1.  The Unmasked Region can have an arbitrary shape.  A 

rectangle shape to enclose the whole Unmasked Region, called the Rectangle Unmasked 

Region, is selected for mathematical representation and processing of the region by 

matrices.  For example, as shown in Fig. 2.1(a) for Measurement A, the dimension of the 

Rectangle Unmasked Region is pNA x pMA.  Two matrices associated with the Rectangle 

Unmasked Region are the intensity matrix IA and phase matrix ∆ϕA, which represent the 

array of measured intensities and calculated phase differences, respectively.  Both 

matrices have the dimension NA x MA.  These two matrices are extracted from the 
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measurement data in the FOV.  Similarly, the Measurement B after masking has the 

Rectangle Unmasked Region, as illustrated by the hatched region as shown in Fig. 2.1(b), 

with physical dimension of pNB x pMB.  The intensity matrix IB and phase matrix ∆ϕB, 

both with the dimension of NB x MB, are extracted to represent the measurement.   

The correlation analysis, to be discussed in Sec. 2.2.1, is used to calculate the 

translation to match the two measurements and find the Overlapped Region.   

 

2.2.1. Translation 

Translation is the lateral movement in the x and y directions between the two 

measurements of the same measurement object.  The lateral translation is determined by 

the location of the correlation peak in the cross-correlation matrix C of two intensity 

matrices IA and IB.   

The direct normalized method [31] is utilized to calculate the cross-correlation 

matrix C, which has the dimension of (NA + NB – 1) x (MA + MB – 1).   

 

C = IA ⊗  IB (2.1) 

 

where ⊗  is the cross-correlation operator.   

Each element of the matrix C is expressed by 
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where 
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u and v are the lateral shift coordinates, ranging from 1 to NA + NB – 1 and 

from 1 to MA + MB – 1, respectively,  

x and y are the integers indicating location (x, y) of each element in the matrix, 

and 

AI  and BI  are the means of IA and IB, respectively.   

 

The correlation peak is the maximum value in the cross-correlation matrix C.  If 

the correlation peak is located at (Np, Mp), the lateral translation in pixels of Measurement 

A relative to Measurement B is (Np – NA, Mp – MA).   

The lateral translation identified from the procedures described above has the 

resolution of pixel spacing.  Sub-pixel spacing resolution is possible by using interpolated 

pixel data.  The interpolation does enlarge the dimensions of the cross-correlation matrix 

and increase the computation time.  

A rectangular Overlapped Region exists between Measurements A and B.  This is 

illustrated by the Overlapped Regions A′ and B′ in Measurements A and B, as shown by 

the bold dashed line in Figs. 2.1(a) and 2.1(b), respectively.  Overlapped Regions A′ and 

B′ have identical shape and size.  The location and size of the Overlapped Regions can be 

calculated from the translation between Measurements A and B.  The phase matrices of 

Overlapped Regions A′ and B′ are denoted as ∆ϕA′ and ∆ϕB′ and have the dimension of 

NA΄ x MA΄ and NB΄ x MB΄, respectively, where NA΄ = NB΄ and MA΄ = MB΄.  The relative tilt 

and phase shift between Measurements A and B are calculated by processing ∆ϕA′ and 

∆ϕB′.  This is elaborated in Sec. 2.2.2.   

 

2.2.2. Tilt and shift correction 

Tilting and shifting are adjustments used to make two planes match in the 3D 

space.  Tilt are represented by two angles, relative to the x and y axes, of the difference 

between the normal vectors of the two planes.  Tilt one plane relative to the other and the 

two planes can be made parallel.  Shift is the translation along the z axis after the tilt 
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correction to make two parallel planes match in space.  Because the phase is linearly 

proportional to the height of the object surface, as described in Sec. B.2.3.1, the tilt and 

shift are represented in the phase domain for the processing convenience.   

The measured data points on the Overlapped Regions do not necessarily form a 

plane in practical applications.  However, because the Overlapped Regions are the same 

portion of the object surface in two separate measurements, the difference between 

phases of measured data points on two Overlapped Regions should follow the trend of a 

plane.  By least square fitting this plane, the tilt and shift corrections can be calculated.   

The ∆ϕA′(x, y) and ∆ϕB′(x, y) are the phases of the pixel in ∆ϕA′ and ∆ϕB′ with the 

lateral location (x, y) in the Overlapped Regions A′ and B′, respectively.  Define ∆ϕD(x, y) 

as the unmasked overlapped phase difference which equals ∆ϕB′(x, y) − ∆ϕA′(x, y), where 

(x, y) = (x1, y1), (x2, y2), …, (xn, yn), and n is the total number of unmasked pixels in the 

Overlapped Region.   

Collect all the unmasked pixels in ∆ϕD(x, y) and construct a matrix L: 
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Record all the phases of the corresponding unmasked pixels and construct a 

vector P: 
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Fit a least square plane to ∆ϕD, defined by cbyaxyxD ++=∆ ),(ϕ .  The 

coefficients a, b, and c are determined by: 

 

( ) ( )PLLL TT

c
b
a

1−
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
 (2.5) 

 

The coefficients a and b relate to the tilt about y and x axes, respectively, of 

Measurement B relative to Measurement A.  The coefficient c determines the relative 

shift of Measurement B relative to Measurement A in z axis.   

Once the coefficients, a, b, and c are obtained, the phase ),( yxBϕ∆  of the whole 

measurement region in Measurement B is corrected by: 

 

[ ]cbyaxyxyx B
c
B ++−∆=∆ ),(),( ϕϕ  (2.6) 

 

where ),( yxc
Bϕ∆  is the tilt-corrected phase of ∆ ),( yxBϕ .   

In summary, to register two holograms shown in Fig. 2.1, the unmasked 

Measurements A and B are first identified.  Using the cross-correlation analysis, the 

translational shift is calculated and the rectangular Overlapped Regions A′ and B′ are 

marked.  The phase matrices of two Overlapped Regions are used to find the tilt and shift 

between Measurements A and B and complete the data registration.   

 

2.2.3. Rotation 

Rotation is the angular movement of the measurement object in the xy plane 

between the two measurements.  If the rotation occurs with the lateral translation, the 

identification and correction of the rotation will be conducted before the lateral 

translation which is described in Sec. 2.2.1.   



 17

2.2.3.1. Rotation identification 

The identification of the rotation is implemented using the Fourier transform [32] 

of the intensity matrices.  Assume the object in the Measurement B is rotated by θ0 and 

translated by (xs, ys) relative to the Measurement A, the intensity matrix IB can be 

expressed by 

 

)cossin,sincos(),( 0000 ssAB yyxxyxIyxI −+−−+= θθθθ  (2.7) 

 

The Fourier transform F of the intensity matrix I is determined by [33] 

 

∑= +−

yx

Nyxj
kk eyxI

N
F

,

/)(2),(1),( ηξπηξ  (2.8) 

 

where k = A or B, and N is the total number of data points.   

The relation between FA and FB is determined by 

 

)cossin,sincos(),( 0000
)(2 θηθξθηθξηξ ηξπ +−+= +−

A
yxj

B FeF ss  (2.9) 

 

From Eq. (2.9), we have 

 

)cossin,sincos(),( 0000 θηθξθηθξηξ +−+= AB MM  (2.10) 

 

where MA = |FA| and MB =|FB| are the magnitudes of FA and FB, respectively.   

Eq. (2.10) indicates that the matrix MB is rotated by the angle θ0 relative to the 

matrix MA in the ζη plane.  Convert the Cartesian coordinate (ζ, η) of the matrices MA 
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and MB into the polar coordinate (ρ, θ), where ρ and θ are the magnitude and angle of the 

coordinate (ζ, η), respectively.  Then the relation between the matrices MA and MB in Eq. 

(2.10) is expressed by 

 

),(),( 0θθρθρ += AB MM  (2.11) 

 

The rotation θ0 between the two matrices MA and MB is separated from the lateral 

translation (xs, ys) using the Eq. (2.11).  This rotation can be identified using the cross-

correlation, defined by Eqs. (2.1) and (2.2), of the matrices MA and MB in the ρθ plane.   

 

2.2.3.2. Rotation correction 

Once the rotation θ0 of the object between the two measurements is identified 

using the method described in Sec. 2.2.3.1, the rotation will be corrected before the 

identification of the lateral translation by [33] 
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where xr and yr are the lateral coordinates after rotation.   

Interpolation is required in general after the rotation because the lateral 

coordinates (x, y), which are integers in the matrix before the rotation, will not 

necessarily be integers after the rotation.   

The bilinear interpolation [33] is applied due to the easy implementation and less 

computational cost.  Assume that the intensity values I11, I12, I21, and I22 at the four 

positions (x1, y1), (x1, y2), (x2, y1), and (x2, y2), respectively, are known and the intensity at 

the position (x, y) can be estimated by Eq. (2.13), where x1 < x < x2 and y1 < y < y2.   
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2.3.  Accuracy evaluation of hologram registration 

Two examples using different approaches are applied to evaluate the accuracy of 

the proposed hologram registration method.  The first approach uses a measurement 

object which is small and fits in the FOV.  The object can be accurately measured to 

create a standard height measurement hs(x, y).  The same object is then measured twice 

on two sides with an overlapped region in between.  The proposed method is applied to 

calculate the registered height measurement hm(x, y).  The accuracy of the registration 

method is quantified by comparing hs(x, y) to hm(x, y).  A wheel hub is used as the 

Example I.   

The other approach uses a measurement object larger than the FOV.  The CMM 

measurement of the whole measurement object is used as the standard measurement hs(x, 

y).  It is compared to the registered measurement hm(x, y).  An engine combustion deck 

surface is used as the Example II.   

 

2.3.1. Accuracy evaluation procedures  

Two parameters, the root mean squared (RMS) error erms of the difference 

between the hs(x, y) and hm(x, y) and the surface flatness, are used to evaluate the 

accuracy of the hologram registration method.   

To compare hs(x, y) and hm(x, y), a linear transformation is required to tilt and 

shift the hm(x, y) relative to hs(x, y) before calculating erms.  Since the measurement 

system in this study only delivers the relative height measurement, this linear 

transformation is required.  Let Fs(x, y) = asx + bsy + cs and Fm(x, j) = amx + bmy + cm be 
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the least square fitted planes of hs(x, y) and hm(x, y), respectively.  The linear 

transformation of hm(x, y) can be expressed as:  

 

[ ])()()(),(),( smsmsmm
T
m ccybbxaayxhyxh −+−+−−= . (2.13) 

 

The RMS error erms is: 
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where d is the total number of all unmasked pixels.   

The surface flatness is also used as an index to evaluate the accuracy.  Two 

flatness definitions are used in this study.  One is 6σ flatness, which is equal to six times 

the standard deviation of measured points from the least square fitted plane [34].  This 

definition suppresses the spike noise contribution to the flatness.  The other is the 

maximum peak to valley from the least square fitted plane.  This is called the peak-to-

valley flatness.   

 

2.3.2. Example I -- wheel hub   

As shown in Fig. 2.2, a wheel hub, which is small to fit the FOV, is used as a 

measurement object to evaluate the accuracy of the hologram registration method.  Five 

bolts were assembled to the wheel hub to transmit power to the wheel.  These bolts after 

being assembled may alter the original hub surface flatness and need to be inspected.  

The laser holographic interferometry is a unique method to measure the surface flatness 

of the hub with the assembled bolts.  The diameter of the hub, as shown in Fig. 2.2(b), is 

about 150 mm.   
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The intensities and phases for each measurement are shown in Fig. 2.3.  The solid 

black regions in Figs. 2.3(a) and 2.3(b) are masked and excluded for height measurement.  

The intensity matrices IA and IB have the dimension of 649 x 964 and 615 x 964 pixels, 

respectively.   

The cross-correlation matrix C of IA and IB is represented in Fig. 2.4.  The 

dimension of C is 1297 x 1927 pixels.  The location of the correlation peak is identified 

at (301, 964).  This indicates that the measurement matrix A should translate 301 − 649 = 

−348 pixels in +x direction and 964 − 964 = 0 pixels in the +y direction to make the 

strongest match with the measurement matrix B.  With this translational movement, the 

Overlapped Regions A′ and B′ can be chosen from the measurements A and B, 

respectively.   

The hologram phase ∆ϕA′ and ∆ϕB′ of the Overlapped Regions A′ and B′, 

respectively, are shown in Fig. 2.3(b) in dashed rectangles.  The reference point is 

marked with a plus sign.  The dimension NA΄ x MA΄ of the Overlapped Regions is 300 x 

964 pixels.  The relative tilt and shift parameters [a, b, c], defined in Eq. (2.5), are 

[−1.0×10−4 rad/pixel, 1.2×10−5 rad/pixel, 1.23×10−2 rad].  Correct the relative tilt using 

Eq. (2.6) and register two holograms.  The phase and intensity of the registered hologram 

are shown in Fig. 2.5.  A clear separation line between two measurements can be 

observed in the registered intensity, as shown in Fig. 2.5(b).  This is because the intensity 

of the Measurements A and B are connected without any correction.  This does not affect 

the height measurement, which is calculated from the registered phase, as shown in Fig. 

2.5(a).   

There is a dent on the hub surface, which is marked in Fig. 2.2(b) and shown in 

close-up view in Fig. 2.2(c).  Because this dent is more than 9 pixels in the image, this 

cannot be eliminated by 9 point median filtering.  The 6σ surface flatness definition is 

applied to suppress the effect of this dent on the surface flatness measurement results.   

Interpolation is applied to achieve sub-pixel resolution for the hologram 

registration.  First, the lateral cross-correlation process, defined in Eq. (2.2), is 

interpolated.  For example, one point linear interpolation is utilized in the 300 x 964 
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pixels overlapped region.  The lateral translation is the same after processing.  For higher 

sub-pixel resolution, two or more points can be linear interpolated.   

The registered height measurement hm(x, y) is shown in Fig. 2.6(a).  The standard 

measurement hs(x, y), as shown in Fig. 2.6(b), is obtained in a single holographic 

interferometry measurement of the wheel hub, which is small to fit in the FOV.  The 6σ 

flatness of hs(x, y) and hm(x, y) are 25.3 and 25.2 µm, respectively.  The gage repeatability 

(1σ ) of the system is evaluated as 0.3 µm.  Compared to this value, the 0.1 µm or 0.4% 

flatness difference is not significant.  It indicates that the hologram registration does not 

significantly contribute to the measurement error.   

The difference between hs(x, y) and hm(x, y) is presented in Fig. 2.7.  The RMS 

value erms is 0.4 µm.  This further proves the accuracy of the proposed hologram 

registration method.   

The effect of the area of the overlapped region was also evaluated.  As shown in 

Fig. 2.8, hologram registration with 10, 25, and 40% of the overlapped vs. total 

measurement area were conducted with the corresponding erms of 0.9, 0.5 and 0.4 µm, 

respectively.  As the area of the overlapped region increases, the error introduced by the 

registration method decreases.  The increase of overlapped region from 10 to 25% 

reduces the erms by 0.4 µm.  The same 15% increase of overlapped region from 25 to 40% 

only reduces the erms by 0.1 µm.  Also, when the area of the overlapped region is larger 

than 40%, the error erms is approaching the 0.3 µm system error.  It is expected that 

increasing the overlapped region beyond 40% will not reduce erms significantly.   

 

2.3.3. Example II -- engine head combustion deck surface 

As shown in Fig. 2.9, an engine head combustion deck surface has a large, 420 x 

180 mm, measurement area.  Two measurements, marked as Measurements A and B in 

Fig. 2.9, were conducted.  The translation of the measurement object was achieved by 

moving it with the side datum surface of the measurement object in contact with a 

straight reference bar in the machine.  The intensity matrices IA and IB have dimensions 

of 948 x 584 and 889 x 599 pixels, respectively.  Following the cross-correlation 
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procedure, the overlapped region with the size of 598 x 458 pixels is identified.  The 

relative tilt and phase shift parameters [a, b, c], defined in Eq. (2.5), are [4.5×10−4 

rad/pixel, 3.1×10−3 rad/pixel, −0.5 rad].  The tilt and phase shift are corrected using Eq. 

(2.6) and the two measurements are registered as a 1378 x 599 matrix.   

The 3D profile of the registered surface is shown in Fig. 2.10(a).  In comparison, 

the same surface was measured by a Zeiss Model UPMC 850 CMM with a scanning 

probe.  The CMM measurement, which covers only a small portion of the surface, is 

shown in Fig. 2.10(b).   

The peak-to-valley flatness definition is applied for evaluation because the surface 

area measured by CMM and laser holographic interferometry is significantly different.  

Under such condition, the standard deviation does not provide a comparable 

representation of measurement results.  The peak-to-valley flatness of the CMM and the 

registered laser holographic measurement are 149.7 and 153.5 µm, respectively.  This 

close comparison, 2.5% discrepancy, further verifies that the developed hologram 

registration method is feasible for the precision measurement of large components.   

 

2.4.  Concluding remarks 

This research developed a hologram registration method for the laser holographic 

interferometry to measure the 3D profile of objects larger than the FOV.  Two examples 

were used to validate the registration method using two different approaches.  The first 

example, a wheel hub, was smaller than the FOV and enabled the use of holographic 

interferometry to create the standard measurement for the accuracy evaluation of 

hologram registration.  The second example, an engine head combustion deck surface, 

was larger than the FOV and a CMM was used to create the standard measurement.  The 

erms was 0.4 µm for the wheel hub (Example I) and peak-to-valley flatness difference was 

about 4 µm for the engine head combustion deck surface (Example II).  The feasibility of 

the proposed hologram registration method was demonstrated.   

The unique feature of the proposed registration method is the elimination of using 

target for data registration.  This could simplify the measurement procedure and reduce 
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the time.  Several research investigations can follow this study.  The robustness of the 

proposed registration method with more complex surface geometric shapes than 

examples of the wheel hub and engine combustion deck surfaces is a good future research 

topic.  The limit of the tilt and shift and optimal percentage of the area of the overlapped 

region can also be investigated as a series of follow-up research for practical application 

of the proposed hologram registration method.  Only two measurements are used for the 

hologram registration examples in this study.  A more comprehensive program to register 

multiple holograms can be developed and the error propagation analysis can be 

conducted to further advance the capability of hologram registration for precision 

measurements.   
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Fig. 2.1.  Measurement regions and variables used for hologram registration: (a) 
Measurement A and (b) Measurement B.  In this research, W = 1024, p = 0.293 mm, and 

pW = 300 mm.   
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(c) 

 

Fig. 2.2.  Wheel hub: (a) isometric view, (b) top view, and (c) close-up view of the dent 
marked in solid rectangle in (b).   
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(a) 

 

     
 

 

 

 (b) 

Fig. 2.3.  Measured holograms of the wheel hub: (a) intensity and (b) phase of 
Measurements A and B.   
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Fig. 2.4.  Correlation matrix C of Measurements A and B of the wheel hub.  
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(a) 

 

 
(b) 

Fig. 2.5.  Registered hologram of the wheel hub: (a) phase and (b) intensity.   
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 (a) (b) 

Fig. 2.6.  3D profile measurement of the wheel hub: (a) registered measurement hm(x, y) 
and (b) standard measurement hs(x, y).   

 

 

 

 

 

 
 

Fig. 2.7.  Difference between hs(x, y) and hm(x, y) of the wheel hub.  
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Fig. 2.8.  Effect of the area of the overlapped region on the error erms.   

 

 

 

 

 

 
 

 

Fig. 2.9.  Overview of a V6 engine head combustion deck surface.  
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(a) 

 

 
 

(b) 

 

Fig. 2.10.  3D profile of the engine head combustion deck surface: (a) registered 
measurement and (b) CMM measurement.  
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Chapter 3 

Phase Unwrapping for Large Depth-of-Field 3D Laser Holographic Interferometry 
Measurement of Laterally Discontinuous Surfaces 

 

3.1.  Introduction 

Phase unwrapping is a mathematical procedure to eliminate the ambiguity in the 

phase map for imaging applications, including the synthetic aperture radar interferometry, 

laser holographic interferometry, magnetic resonance imaging, and others [35].  In this 

research, phase unwrapping is studied to increase the depth-of-field for the 3D laser 

holographic interferometry measurement of laterally discontinuous surfaces.  The phases 

calculated by the laser holographic interferometry range from –π to π, the principal value 

range of reverse trigonometric functions.  The limited range of phase creates ambiguity, 

called phase wrap.  Fig. 3.1(a) shows an example of a parabolic-shaped surface with 

phases ranging from 0 to 18 radians.  The measurement of this surface with phase wraps 

is shown in Fig. 3.1(b).  Sudden changes of phase are observed at pixels with the phase 

value near –π or π.  Phase unwrapping restores the true phase map (Fig. 3.1(a)) from the 

measured phase map (Fig. 3.1(b)).  If the spatial sampling rate in the phase map is at least 

twice of the highest frequency of the change of phase, so called Shannon sampling 

theorem [36], a phase wrap is assumed when the phase difference between two adjacent 

pixels exceeds the threshold π.  The wrapped phase is compensated by the integral 

multiples of 2π to be unwrapped.   

The technical advancements in phase unwrapping have been aimed to achieve the 

high noise robustness and low computational cost.  Both temporal- and spatial-based 

approaches for phase unwrapping have been developed.  Temporal-based phase 

unwrapping, developed by Huntley and Saldner [36,37], unwraps the change of phase 

over time for each pixel independently.  The error is restricted to individual pixels and 
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does not propagate between pixels.  Special optical configurations [38] are required to 

relate the unwrapped phase to the height of surface and it makes the temporal-based 

approach not suitable for the laser holographic interferometry measurement, the targeted 

application in this research.   

Spatial-based phase unwrapping processes the phase in the 2D spatial domain 

using either path-dependent or path-independent methods.  The path dependent method 

unwraps the phase along a specially designed path by converting the 2D array into a 

folded 1D data set.  This method needs complex path design strategy in the presence of 

noise [39] and is not feasible for the measurement of the laterally discontinuous surface, 

which contains regions disconnected with each other.  Information between disconnected 

regions is unavailable along the designed path.  The automatic transmission valve body, 

as shown in Fig. 3.2(a), has the laterally discontinuous surface.  Figure 3.2(b) shows the 

top view of the measurement surface of a valve body.  It contains grooves which carry 

pressurized fluid to control the position of valves for gear shifting.  The surface with high 

aspect ratio regions disconnected with each other makes the phase unwrapping difficult.   

The spatial-based path-independent methods, including model- [40,41], Bayesian- 

[42], least-squares- [43], and integration-based [44-52], do not require a specially 

designed path for the phase unwrapping.  However, none of these spatial-based path-

independent methods can be directly applied to unwrap the phase of laterally 

discontinuous surfaces because of narrow, curved regions and the discontinuity among 

regions.  The region-referenced method [52], which is an integration-based and path-

independent method, uses the phase data in regions surrounding a pixel to detect the 

phase wrap.  This method has good noise robustness, can automatically adjust the 

direction to adapt for narrow and curved regions, and is selected to be further developed 

in this study.   

The region-referenced phase unwrapping, segmentation and patching, and its 

problems for narrow segmented regions and boundary pixels are explained in Sec. 3.2.  In 

Sec. 3.3, the solutions of phase wrap identification on boundary pixels, masking and 

recovery, dynamic segmentation, and phase adjustment are developed.  An example is 
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presented in Sec. 3.4 to validate the proposed method and study the computational 

efficiency and convergence.   

 

3.2.  Region-referenced phase unwrapping 

The region-referenced method is applied as the base for the developed phase 

unwrapping method.  The region-referenced method uses an iterative algorithm to 

unwrap the phase.  This method searches the pixels with phase wraps and compensates 

the phase by adding or subtracting 2π depending on the sign of phase wrap.  The surface 

is assumed continuous in the height direction with no phase jump over π between two 

adjacent pixels.  The searching and compensation processes are repeated until no phase 

wrap is detected.   

 

3.2.1.  Principle 

A simple method to determine the phase wrap is to use the four adjacent pixels of 

a pixel, marked as (i, j) in Fig. 3.3(a), to determine the phase wrap [39,54].  If at least one 

of the four adjacent pixels has the phase difference larger than π, this pixel is recognized 

to have phase wrap and needs to be compensated by adding or subtracting 2π for phase 

unwrapping.  The problem of this phase unwrapping method is the sensitivity to noise, 

which can cause the divergence of the iteration.  A more complicated region-referenced 

criterion is developed by Huang and He [52] to overcome this problem.  Each adjacent 

pixel in Fig. 3.3(a) is replaced by a region to determine the phase wrap.  For example, the 

adjacent pixel (i−1, j) in Fig. 3.3(a) is replaced by 15 pixels, as shown by the shaded area 

in Fig. 3.3(b), to determine the phase wrap.  If over half of the pixels in the shaded region 

have the phase difference larger than π with the pixel (i, j), a phase wrap is identified at 

pixel (i, j).  The criterion of over half of pixels, which is 8 in the case in Fig. 3.3(b), is 

empirically optimal [52].  Rotating the shaded region around the pixel (i, j) by 90, 180, 

and 270º, the other three reference regions corresponding to the other three adjacent 

pixels in Fig. 3.3(a) can be obtained.  The phase wrap at pixel (i, j) is identified if any of 

the four reference regions have the phase wrap.  Other reference regions of different 
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shapes are also developed [52].  This method can significantly improve the noise 

robustness.  However, pixels on the boundary, so called boundary pixels, have limited 

number of pixels in the reference region to detect the phase wrap.  This makes boundary 

pixels more sensitive to noise.  The laterally discontinuous surface, like the automatic 

transmission valve body in Fig. 3.2, has many boundary pixels due to the discontinuity 

between regions, and may introduce the divergence problem in phase unwrapping.   

Figure 3.4 shows the measured phase map of the automatic transmission valve 

body.  The solid black background is the region not for measurement.  All the phase 

values are within the range from –π to π, the principal value range of reverse 

trigonometric functions.  Phase wraps are observed in the phase map.  The close-up view 

of the region S1 is shown in Fig. 3.5(a).  The boundary pixels, marked by arrows, are a 

source of instability and make the region-referenced phase unwrapping easy to diverge.  

The idea proposed in this research is to first conduct the phase unwrapping without 

considering these boundary pixels, i.e., boundary pixels with phase wrap are masked.  

After phase unwrapping, these masked pixels are recovered by median filtering.  This 

concept will be elaborated in Sec. 3.3.1.   

 

3.2.2.  Segmentation and patching 

Segmentation, which divides the phase map into many small overlapped segments, 

has been developed to improve the computational efficiency for phase unwrapping 

[50,52].  Each segment is first unwrapped independently.  Then, the data of two adjacent 

segments is connected using the overlapped region between these two segments.  The 

static segmentation is defined as the segmentation method with fixed size of segments 

and overlapped regions during unwrapping.   

Patching is the process to combine the data of individual segments after phase 

unwrapping into an integral phase map.  Two adjacent segments with an overlapped 

region are compared with each other and the phases of one segment are shifted by the 

multiple of 2π to make the overlapped regions of the two segments match.  After shifting, 

these two adjacent segments are concatenated.  This procedure is applied to all the 

adjacent segments until an integral phase map including all the individual segments is 
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reached.  The path which the patching process follows is determined iteratively by 

systematically selecting one of the four adjacent segments as the next segment to be 

patched.    

An example of static segmentation with patching is shown in Fig. 3.6(a), which 

illustrates the close-up view of region S2 of the valve body in Fig. 3.4.  The size of each 

segment is (W + Wo) x (W + Wo) with the width of the overlapped region equal to Wo.  

The unwrapped phase in segments C1D1E1F1 and C2D2E2F2 will be patched by shifting 

the phases of the segment C1D1E1F1 relative to the segment C2D2E2F2 to make the 

overlapped region C2D1E1F2 matches in both C1D1E1F1 and C2D2E2F2.   

The problem of the static segmentation for laterally discontinuous surfaces is the 

thin boundary regions.  An example of the boundary region is shown in Fig. 3.6(b), 

which is the close-up view of the region S4 in Fig. 3.6(a).  A boundary region with only 1 

to 2 pixels in width after static segmentation and patching is observed on the top of the 

segment.  The phase wrap which exists in this boundary region cannot be detected or 

removed using the phase unwrapping method.  The dynamic segmentation and the phase 

adjustment, to be discussed in Secs. 3.3.3 and 3.3.4, respectively, are developed to 

overcome this problem.   

 

3.3.  Masking, dynamic segmentation and phase adjustment 

The masking and recovery, dynamic segmentation, and phase adjustment are 

developed to improve the robustness and the computational efficiency for phase 

unwrapping of laterally discontinuous surfaces.  To avoid the divergence problem, 

boundary pixels with phase wrap are masked during phase unwrapping.  These pixels are 

recovered after phase unwrapping.  Dynamic segmentation adaptively determines the size 

of segments to reduce the number of thin boundary regions in segmentation.  The phase 

adjustment corrects the errors after dynamic segmentation to complete phase unwrapping.   
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3.3.1.  Phase wrap identification on boundary pixels 

To determine if a boundary pixel has phase wrap, a criterion is developed.  Each 

boundary pixel has four reference regions.  In each reference region, some pixels are not 

on the object surface, and do not have valid phase information.  Those pixels with valid 

phase information are denoted as valid pixels.  If more than half of the valid pixels in any 

of the four reference regions of a boundary pixel have the phase difference larger than π, 

this boundary pixel is designated to have the phase wrap and will be masked in the phase 

unwrapping.   

 

3.3.2.  Masking and recovery 

Masking is applied on the boundary pixels with phase wrap to avoid the 

divergence.  The masked boundary pixels with phase wrap are not processed for the 

phase unwrapping.  However, the masked boundary pixel is still a valid pixel and its 

phase information is used in reference regions of other pixels for phase unwrapping 

analysis.   

After phase unwrapping, to recover the value at a masked boundary pixel, the 

median filtering [55] is applied.  Median filtering first sorts the phase values of pixels in a 

matrix (usually 3x3, 5x5, 7x7, or 9x9 in dimension) centered at the pixel and then 

chooses the median as the new phase value.  If any of the pixels in the matrix have been 

masked, values of these pixels are not included in the sorting sequence.  Median filtering 

has the advantage of suppressing the spike noise.   

An example of the masking and recovery process is illustrated in Fig. 3.5.  Figure 

3.5(a) shows the close-up view of the region S1 in Fig. 3.4.  Boundary pixels with phase 

wrap are marked by arrows.  These pixels are masked for the phase unwrapping.  Fig. 

3.5(b) shows the result after phase unwrapping and before the recovery.  Seven masked 

boundary pixels still have the phase wrap before the recovery.  The recovery process 

assigns the phase values to the masked pixels using a 7x7 median filter.  The result after 

applying the median filtering is shown in Fig. 3.5(c).  The phase unwrapping is 

completed without divergence problem and the phase values of the masked boundary 

pixels have been recovered.   
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3.3.3.  Dynamic segmentation 

The static segmentation, as discussed in Sec. 3.2.2, has fixed size of segments and 

fixed width of overlapped regions.  Dynamic segmentation is developed in this study to 

overcome the problem of thin boundary regions of laterally discontinuous surfaces.   

To identify the thin boundary region, the width of boundary regions needs to be 

quantified.  A parameter, called the boundary width pm, of each boundary region is 

defined as the maximum number of pixels inside the boundary region in the direction 

perpendicular to the side of the segment.  An example is shown in Fig. 3.7(a).  Two 

unmasked boundary regions, marked by the hatched lines, have pm equal to pm1 and pm2, 

respectively.  The smaller of the two, pm1, is denoted as the minimum side width pmin, 

which is defined as the minimum of the boundary widths of all the boundary regions on a 

side of the segment.   

An exception in the determination of pm occurs when a narrow region exists along 

the two adjacent sides.  As shown in Fig. 3.7(b), the pixels, which are on the top side of 

the segment and are close (less than a predetermined threshold T) to the left side of the 

segment, are not considered in the calculation of the pm3.  In Fig. 3.7(b), the smaller of 

pm3 and pm4 is used to determine the pmin to represent the minimum boundary width of the 

top side of the rectangular segment.   

Dynamic segmentation starts with the static segmentation.  If one side of a 

segment has pmin smaller than T after the static segmentation, dynamic segmentation is 

triggered.  The side of the segment after the static segmentation will be moved toward 

outside of the segment by m1 = (T – pmin) pixels to increase the width of the thin boundary 

region.  The counting of pmin is applied again to identify if any thin boundary region still 

exists on the new segment.  If it does, the side of the segment is moved in the opposite 

direction by m2 = m1 + T/2 pixels.  This dynamic segmentation is repeated to all four 

sides of the rectangular segment and has demonstrated the ability to eliminate most, but 

not all, of the thin boundary regions in practical applications.   

Figure 3.8 shows an example of the dynamic segmentation of the region S3 in Fig. 

3.4.  The size of segments and the width of overlapped regions are W = 50 and Wo = 20 
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pixels in the static segmentation.  The original segment after the static segmentation is 

shown in Fig. 3.8(a).  The segment including the overlapped region is 70 x 70 pixels.  

The top side of the segment has two regions.  The pm in the middle region is 70 and in the 

right region is 2, which is smaller than the predetermined threshold value T (= 6) and is 

identified as a thin boundary region.  The pmin is equal to 2.  Using the dynamic 

segmentation, the top side of the segment is then moved upward by m1 = 4 (= 6 – 2) 

pixels.   The newly obtained segment, as shown in Fig. 3.8(b), has a new thin boundary 

region with the boundary width pm (= 4) in the upper left corner.  The top side of the 

segment is then moved in the opposite direction by m2 = 7 (= 4 + 6/2) pixels.  The newly 

obtained segment with no thin boundary region on the top side is shown in Fig. 3.8(c).  

The same procedure is repeated on the other three sides.  The final segment after the 

dynamic segmentation is 67 x 74 pixels, as shown in Fig. 3.8(d).   

The phase unwrapping results with dynamic segmentation of the region S2 in Fig. 

3.4 are shown in Fig. 3.6(c).  For the segment C1D1E1F1 with no thin boundary region, 

the segment after dynamic segmentation, C′1D′1E′1F′1, does not change.  On the contrary, 

the segment C2D2E2F2 has thin boundary regions.  The dynamic segmentation changes 

the segment to C′2D′2E′2F′2 to eliminate the thin boundary regions.  The phase wrap in the 

region S4 of Fig. 3.6(a) is eliminated after dynamic segmentation (Fig. 3.6(c)).  The 

dynamic segmentation improves the noise robustness of the phase unwrapping method.   

 

3.3.4.  Phase adjustment for thin boundary regions with phase wrap 

After dynamic segmentation, some thin boundary regions may still exist.  The 

phase wrap in these thin boundary regions cannot be solved using the region-referenced 

method described in Sec. 3.2.  The phase adjustment method is developed to identify the 

phase wrap in the integral phase map and adjust the phase values by the multiple of 2π in 

the thin boundary regions to complete the phase unwrapping process.   

Figure 3.9(a) illustrates two examples of regions S5 and S6 in the integral phase 

map of the automatic transmission valve body (Fig. 3.2).  The close-up view of the region 

S5 is shown in Fig. 3.9(b).  The thin boundary region in S5 is located on the top side.  

During dynamic segmentation, the boundary line cannot extend beyond the integral phase 
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map and the thin boundary region exists.  The close-up view of S6 is shown in Fig. 3.9(c).  

The thin boundary region with phase wrap still exists after moving the boundary line 

twice in dynamic segmentation.   

The phase values of pixels in thin boundary regions can be estimated or 

extrapolated using a polynomial function fitted by the data of the integral phase map.  If 

the difference between the estimated phase values and the existing phases of pixels in 

thin boundary regions is larger than 2π, the multiple of 2π is subtracted to the existing 

phases to make the difference smaller than 2π.  The polynomial function can be of the 

first, second, third, or higher order.  The first order polynomial function representation of 

the integral phase map is:  

 

1 0,1 1,1 2,1( , )i j a a i a jϕ = + +  (3.1) 

 

where  

 

ϕ1(i, j) is the estimated phase value of the pixel (i, j) in the integral phase map,  

i and j are the row and column coordinates, respectively, of the integral phase map, 

and  

a0,1, a1,1, and a2,1 are the coefficients of the first order polynomial function, 

determined using the least square estimation [56]: 
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The second order polynomial function of ϕ(i, j) is: 
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2 2
2 0,2 1,2 2,2 3,2 4,2 5,2( , )i j a a i a j a i a ij a jϕ = + + + + +  (3.3) 

 

where a0,2, a1,2, a2,2, a3,2, a4,2, and a5,2 are estimated by [56]:  
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The third order polynomial function is defined by:  

 

2 2 3 2 2 3
3 0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3( , )i j a a i a j a i a ij a j a i a i j a ij a jϕ = + + + + + + + + + (3.5) 

 

where a0,3, a1,3, a2,3, a3,3, a4,3, a5,3, a6,3, a7,3, a8,3, and a9,3 are the coefficients to be 

estimated by the same least square estimation principle [56].   

To determine which order polynomial is adequate for the phase adjustment, the 

root mean square erms, defined by Eq. (3.6), of the estimation error is applied.   
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where k is the order of the polynomial function and N is the total number of data points in 

the integral phase map.   
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If the erms is small than a predefined threshold (for example, 0.2 rad which is 

experimentally verified to be sufficient in this study), the polynomial function is 

considered adequate for the phase adjustment.  Otherwise, higher order polynomial 

function will be fitted using the least square method [56] until the erms is smaller than the 

threshold.   

 

3.4.  Example 

The measurement of the surface on an automatic transmission valve body, as 

shown in Fig. 3.2, is used as an example of the laterally discontinuous surface to 

demonstrate the developed phase unwrapping method.  The measurement area, as shown 

in Fig. 3.2(b), was 265 x 250 mm.  The measurement result was represented in a matrix 

with the dimension of 892 x 842 pixels.  The height measurement range was set as 0.3 

mm.  The lower right corner of the valve body was raised by a wedge to increase the 

height range of the valve body surface beyond 0.3 mm and generate the phase wrap.   

 

3.4.1.  Phase unwrapping results 

The measured phase map is shown in Fig. 3.4.  To unwrap the measured phase 

map in Fig. 3.4, the region-referenced phase unwrapping method described in Sec. 3.2 is 

applied.  The 15 pixels reference region, as shown in Fig. 3.3(b), is utilized to identify the 

phase wrap.  For each pixel, if more than 8 pixels in any of the four reference regions 

have the phase difference larger than 2π, that pixel is marked to have phase wrap.  The 

masking and the 7x7 median filter for recovery, as discussed in Sec. 3.3.2, are applied on 

those boundary pixels with phase wrap to avoid the divergence problem on boundary 

pixels.   

The dynamic segmentation with W = 50 pixels, Wo = 15 pixels, and T = 6 pixels, 

is applied to generate 18x17 (=306) segments.  This segmentation generates 71 thin 

boundary regions.  The dynamic segmentation is applied to move all four sides (top, 

bottom, right, and left) of the segments to reduce the number of thin boundary regions.  

In this example, 53 segments have at least one of the four sides moved once and 3 
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segments have at least one of the four sides moved twice.  After the dynamic 

segmentation, only 5 thin boundary regions exist.  These remaining thin boundary regions 

are marked by three arrows and two boxes (S5 and S6) in Fig. 3.9(a).  Figures 3.9(b) and 

3.9(c) illustrate the close-up view of the thin boundary regions in S5 and S6.   

The dynamic segmentation was necessary to achieve a converged solution to 

phase unwrapping in this example.  If only the static segmentation was used, the integral 

phase map was incorrect and the phase adjustment could not correct the errors in the 

integral phase map.   

To recover the phase values in the five thin boundary regions shown in Fig. 3.9(a), 

the first and second order polynomial functions were applied to fit the integral phase map.  

Results of the fitted polynomial functions are ϕ1(i, j) = –1.521 + 0.006i + 0.013j with a0,1 

= –1.521, a1,1 = 0.006, and a2,1 = 0.013, and ϕ2(i, j) = –0.497 + 0.003i + 0.010j + 4×10-6i2 

+ 1×10-7ij + 4×10-6j2 with a0,2 = –0.497, a1,2 = 0.003, a2,2 = 0.010, a3,2 = 4×10–6, a4,2 = 

1×10–7, and a5,2 = 4×10–6.   

The root mean square erms is calculated to determine which order of the 

polynomial function is adequate for the phase adjustment.  The erms for the first and 

second order polynomials are 0.33 rad and 0.16 rad, respectively, with the total number 

of data points N = 191131.  Because the second order polynomial has the erms smaller 

than the predefined threshold 0.2 rad, this polynomial is used for the phase adjustment.   

The difference is calculated between the existing phase values and the estimated 

values of ϕ2(i, j) in the thin boundary regions.  The multiple of 2π is added to or 

subtracted from those pixels in the thin boundary regions to make the difference smaller 

than 2π.  For example, in S5 and S6, 2π was subtracted from both regions to bring the 

phase values from the level of 15 rad to 9 rad and from the 9 rad to 3 rad, respectively.  

Figure 3.9(d) shows the integral phase map after the phase adjustment.  The close-up 

views of the two regions S΄5 and S΄6 in Fig. 3.9(d) are shown in Figs. 3.9(e) and 3.9(f), 

respectively.  The errors have been removed and the whole phase unwrapping process is 

complete.   
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3.4.2.  Effect of W and Wo on computational efficiency 

Two sets of the numerical experiments to study the effect of W and Wo on 

computational efficiency are conducted and results are summarized in Table 3.1.  The Wo 

is fixed at 25 pixels in the first set of test.  The reduction of W from 150 to 30 pixels 

improves the computational time from 38 to 15 minutes using a common personal 

computer with the MATLAB software.  A smaller size segment requires less 

computational time for phase unwrapping.  However, reducing W increases the number of 

segments and will eventually increase the computational time.  As shown in Table 3.1, 

when W is reduced to 29 pixels, the computation time is increased to 16 min.  When W is 

smaller than 29 pixels, the phase unwrapping method diverges.   

The second set of the numerical experiment is conducted by fixing W and 

reducing Wo.  With a fixed W at 40 pixels, as shown in Table 3.1, the reduction of Wo 

from 25 to 10 pixels further reduces the computational time to 6 min while the number of 

segments remains the same at 506.  As Wo reduces, the size of segments after dynamic 

segmentation becomes smaller and makes the phase unwrapping of each segment faster.  

The total computational time is reduced.  When Wo is smaller than 10 pixels (W = 40 

pixels), the divergence problem occurs.   

 

3.4.3.  Convergence 

The convergence of the phase unwrapping method is also investigated.  As shown 

in Table 3.2, for W at 50, 40, and 29, the minimum Wo without the divergence problem 

are 10, 10, and 24, respectively, for the automatic transmission valve body example.  

When W reduces from 50 to 40 pixels, the minimum Wo is the same (10 pixels) to make 

the phase unwrapping method converge.  When W reduces from 40 to 29 pixels, the 

minimum Wo increases to 24 pixels.  This is likely due to the increase in the number of 

boundary pixels in smaller segments makes the region-referenced phase unwrapping 

more prone to divergence.   

This example demonstrates the importance of selecting W and Wo to improve 

computational efficiency without compromising the stability in phase unwrapping.  The 

selection of W and Wo will change for different applications.  The basic principle learned 
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in this example is to use an optimal W which balances the number of segments and 

computational time in each segment.  Small Wo without triggering the instability is 

desired.   

 

3.5.  Concluding remarks 

A new phase unwrapping method was developed to mathematically increase the 

height measurement range of the laser holographic interferometry while maintaining the 

same level of accuracy and resolution.  This method had successfully solved the phase 

unwrapping problem of the laterally discontinuous surfaces using an example of the 

automatic transmission valve body.  Three new approaches, including the masking and 

recovery, dynamic segmentation, and phase adjustment for pixels in thin boundary 

regions, had demonstrated to be effective to avoid the divergence problem of boundary 

pixels.  A guideline was developed to select the size of segment for improving the 

computational efficiency without convergence problem.   

This phase unwrapping method, together with the hologram registration method 

developed by Huang et al. [53], can successfully increase the measurement volume for 

laser holographic interferometry measurements.  The phase unwrapping method increases 

the height and the hologram registration method expands the field of view.   

Two research investigations can be further developed to advance the laser 

holographic interferometry measurement system.  For measuring objects with height 

discontinuity, the 3D CAD model or predetermined (a priori) value on the discontinuity 

point can be used in phase unwrapping.  The adaptive filtering of the phase map [58] can 

also be applied to improve the noise robustness.   
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Table 3.1.  Computational time for phase unwrapping of the automatic transmission valve 
body example (892 x 842 pixels).   

 

Size of segments, 
W (pixels) 

Width of overlapped 
regions, Wo  (pixels) 

Number of 
segments 

Computational 
time (min) 

150 25 36 38 

100 25 81 25 

50 25 306 18 

40 25 506 15 

30 25 870 15 

29 25 930 16 

40 20 506 12 

40 15 506 9 

40 10 506 6 

 

 

Table 3.2.  Minimum Wo for phase unwrapping without divergence in the automatic 
transmission valve body example.   

 

W (pixels) Minimum Wo (pixels) 
without divergence 

50 10 

40 10 

29 24 
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 (a) 

 

 

 
(b) 

 

Fig. 3.1.  Artificially created phase map: (a) 3D true phase map without phase wrap and 
(b) 3D wrapped phase map.   
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(a) 

 

 
 

 

 (b) 

Fig. 3.2.  The automatic transmission valve body: (a) isometric view and (b) top view.   
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(i, j)(i-1, j)

(i, j+1)

(i+1, j)

(i, j-1)
                                

(i, j)

 
 (a) (b) 

Fig. 3.3.  Detection of phase wrap at pixel (i, j): (a) surrounding four pixels and (b) 
reference region surrounding the pixel.   
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Fig. 3.4.  Measured phase map with phase wrap for the automatic transmission valve 
body.   
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 (a) 

 

 
 (b) 

 
 (c) 

 

Fig. 3.5.  Close-up view of the region S1 in Fig. 3.4 as an example of the boundary pixels 
with decreased noise robustness in the detection of phase wrap: (a) before phase 
unwrapping, (b) after phase unwrapping and before recovery, and (c) after phase 

unwrapping and recovery.   

: Boundary pixels with phase wrap 
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 (a) (b) 

 

 
(c) 

 

Fig. 3.6.  Segmentation: (a) static segmentation of the region S2 in Fig. 3.4, (b) close-up 
view of the region S4 in Fig. 3.6(a), and (c) dynamic segmentation of the region S2 in Fig. 

3.4.   

 

W Wo 

C′1 D′1

E′1F′1 

C′2 D′2

E′2 F′2

C1 D1 

E1 F1 

C2 D2 

E2 F2 

S4 



 54

 

 
(a) 

 

 
(b) 

Fig. 3.7.  Definition of the boundary width pm: (a) two boundary regions and (b) the 
condition with pixels on the top side close to the left side of the segment.   
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 (a) (b) 

         
 

 

 (c) (d) 

Fig. 3.8.  Example of the dynamic segmentation of region S3 in Fig. 3.4 (W = 50, Wo = 
20, and T = 6 pixels).   
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(a) (c) 

 

      
 (d) (f) 

Fig. 3.9.  Phase unwrapping of the automatic transmission valve body: (a) unwrapped 
phase map without adjustment, (b) close-up view of the region S5 in (a), (c) close-up 

view of the region S6 in (a), (d) unwrapped phase map after adjustment, (e) close-up view 
of the region S΄5 in (d) after adjustment, and (f) close-up view of the region S΄6 in (d) 

after adjustment.   
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Chapter 4 

Laser Holographic Interferometry Measurement of Cylinders 

 

 

4.1.  Introduction 

Round shape is an important surface geometry.  About 70% of all engineering 

components have an axis of rotational symmetry in them somewhere [34].  To evaluate 

the surface geometry, the roundness for two-dimensional (2D) circle and the cylindricity 

for three-dimensional (3D) cylinder are developed.  Currently, the contact-based 

measurement [59-63] is widely utilized to evaluate the roundness and cylindricity due to 

its simple implementation and flexibility.  However, the contact-based cylindricity 

measurement delivers only limited number of cross-sections along the axis of the cylinder 

surface to save the inspection time and cost.  Some possibly important features between 

two adjacent cross-sections of the cylinder surface may be missing.  The measurement 

time is dependent on the number of cross-sections to be measured.   

A non-contact optical-based cylindricity measurement method was developed 

[64].  This method applied the interferometry to measure the cylinder surface at grazing 

incidence.  The interference pattern of a master cylinder with negligible cylindricity 

errors is compared with that of the sample cylinder to obtain the surface geometry of the 

sample cylinder.  The grazing incidence configuration of this method limits the axial 

length of the cylinder surface which can be measured.  To avoid the ambiguity, the 

diameter of the sample cylinder should match the known diameter of the master cylinder 

within a wavelength [64].  This restricted the flexibility of the measurement system.   

A new mathematical method is developed to utilize the laser holographic 

interferometry system [65] for cylindricity measurement of cylinders with variable 

diameters.  The mathematical model is presented in Sec. 4.2.  In Sec. 4.3, the calibration 
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process is discussed.  Simulations and experiment are conducted to demonstrate the 

feasibility of the developed method in Sec. 4.4.   

 

4.2.  Mathematical model 

The mathematical model is based on the customized design of a laser holographic 

interferometry system.  This model transforms the measurement data from the laser 

holographic interferometry into the 3D Cartesian representation of the cylinder surface.  

The cylindricity of the cylinder surface is then evaluated.   

 

4.2.1.  System design 

The regular laser holographic interferometry system for the flat object 

measurement is shown in Fig. 4.1(a).  This system, which can successfully measure the 

flat surfaces of machined metals with µm-level accuracy [65], is composed of three major 

components, the vibration isolated table, the optical measurement unit, and the off-axis 

parabolic mirror.  The vibration isolated table supports the optical measurement unit and 

the measurement object.  The diverging light coming from the optical measurement unit 

is collimated by the parabolic mirror and directed to the measurement object directly.  

The light reflected from the measurement object carries the height information of the 

object, interferes with the reference light in the optical measurement unit, and generates 

the interference pattern.  Fourier transformation [65] is applied to analyze the interference 

pattern and the 3D surface profile of the flat measurement object is generated.   

A cylindrical lens, as shown in Fig. 4.1(b), is applied to customize the optical 

system for the cylindricity measurement.  Without the cylindrical lens, small amount of 

the collimated light coming down from the parabolic mirror can be reflected back from 

the round object surface due to the large surface curvature.  An ideal cylindrical lens 

changes the incident parallel light beam into a converging beam and focuses at a straight 

line.  With this cylindrical lens, a cylinder can be positioned with the center axis very 

close to the focus line of the cylindrical lens as shown in Fig. 4.1(b).  The converging 

light beam from the cylindrical lens hits the cylinder surface in the direction close to 
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normal and is reflected back through the cylindrical lens to convert into parallel light 

beam again.  The converted parallel light beam after the cylindrical lens follows the same 

path as for the flat surface to generate the interference pattern in the optical measurement 

unit.   

The cylindrical lens virtually converts the cylindrical surface into flat shape.  To 

the optical measurement unit, the cylindrical measurement object is still flat.  The same 

Fourier transformation described above is applied and the calculated value of each 

measured point relates to the distance from the corresponding point on the cylindrical 

measurement object surface to the focus line of the cylindrical lens.   

Only a section of the whole circumference of the cylindrical surface can be 

covered in each measurement with the cylindrical lens configured as shown in Fig. 4.1(b).  

A rotational stage will be used to hold the cylinder and precisely change its angular 

positions.  The developed mathematical model is applied to convert the measurement 

data from the laser holographic interferometry into the 3D Cartesian representation of the 

cylindrical measurement object surface.   

 

4.2.2.  Mathematical deduction 

The geometric relations between the cylindrical lens, the rotational stage, and the 

cylinder are defined in the mathematical model.  The format of the measurement data by 

the laser holographic interferometry is described.  The mathematical transformation is 

derived to convert the measurement data into 3D Cartesian representation of the cylinder 

surface.   

 

4.2.2.1.  Geometric relation definition 

The 3D positions of the cylindrical lens focus line, the rotational stage center axis, 

and the cylinder center axis do not match in practice.  Figure 4.2 is a 3D illustration of the 

geometric relations in this configuration.  The positions are referred to a common 

Cartesian coordinate system with the origin at O(0, 0, 0).  This coordinate system is 

predefined by the laser holographic interferometry measurement system.  The center axis 

of the rotational stage goes through the point denoted as O0(x0, y0, z0) and follows the 
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direction denoted as D0(a0, b0, c0).  The cylinder center goes through the point denoted as 

O1(x1, y1, z1) and follows the direction denoted as D1(a1, b1, c1).  As the rotational stage 

rotates the cylinder, the position of O1(x1, y1, z1) and the direction D1(a1, b1, c1) will 

change.  The focus line of the cylindrical lens goes through the point denoted as O2(x2, y2, 

z2) and follows the direction denoted as D2(a2, b2, c2).  The focal length of the cylindrical 

lens is R0.   

The collimated light travels down and reaches the cylindrical lens, which converts 

the collimated light into converging light.  The converging light, which virtually focuses 

at a line going through the point O2 and following the direction D2, reaches the cylinder 

and covers the region on the cylinder surface marked by hexagons in Fig. 4.2.  The 

reflected light from the cylinder surface travels through the cylindrical lens and converts 

into collimated light to generate the interference pattern in the optical measurement unit 

for calculation of “height,” which relates to the distance from the cylinder surface to the 

focus line of the cylindrical lens.   

It is assumed that the true values of the parameters O1(x1, y1, z1), D1(a1, b1, c1), 

O2(x2, y2, z2), D2(a2, b2, c2), and R0 are known for the conversion of measurement data.  In 

Sec. 4.3, the calibration process is elaborated to estimate these values.   

 

4.2.2.2.  Format of measurement data 

The measurement data from the laser holographic interferometry system is 

delivered in a matrix.  For flat surface measurement, the row and column positions of 

each element in the matrix linearly correspond to the x and y coordinates of the point on 

the object surface, respectively.  The value of each element in the matrix indicates the 

height of the corresponding point on the object surface.  The heights of all the data points 

are measured relative to a reference point, which has the height value equal to zero in the 

matrix.   

For the cylindricity measurement with the configurations shown in Fig. 4.2, the 

row and column positions of each element in the matrix correspond to the x and y 

coordinates of the point on the cylindrical lens.  The value of each element in the matrix 

indicates the distance from the point on the cylinder to the focus line of the cylindrical 
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lens minus a constant shift, denoted as S.  This constant shift S is the distance from the 

reference point, denoted as Pr, to the focus line of the cylindrical lens.  In the matrix, the 

value of the reference point is zero.   

 

4.2.2.3.  Data conversion 

The measurement data of a cylinder from the laser holographic interferometry 

should be converted into Cartesian form to represent a 3D cylinder surface and calculate 

the cylindricity.   

The conversion is composed of three steps.  First, the point on the focus line of 

the cylindrical lens and the optical path, which relates to an element in the measurement 

matrix, is calculated.  For example, the point Pm on the cylindrical lens, as shown in Fig. 

4.2, has the coordinates (xm, ym, zm), in which xm and ym can be calculated from the row 

and column positions of the corresponding element in the measurement matrix.  The 

collimated light reaches Pm and follows the illustrated path to reach the point Po with the 

coordinate (xo, yo, zo) on the cylinder.  This path virtually converges to the point Pc with 

the coordinate (xc, yc, zc) on the focus line of the cylindrical lens.  With the (xm, ym) data 

of the point Pm, the known focal length R0 of the cylindrical lens, the point O2 (x2, y2, z2), 

and the direction D2 (a2, b2, c2), the 3D coordinate of the point Pc and the direction vector 

from Pc to Pm can be determined.  Second, the relative 3D coordinates of the point Po on 

the cylinder surface is calculated with the value, denoted as d0, of the element in the 

measurement matrix corresponding to the point Pm, the known constant shift S, and the 

calculated 3D coordinate of the point Pc.  Third, the calculated 3D coordinate of the point 

Po is rotated about the center axis of the rotational stage with the angular position of the 

cylinder to compensate its angular position change in different measurements.   

The point Pc (xc, yc, zc) on the focus line of the cylindrical lens is determined by: 
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where t is the scalar parameter to be determined.   

The distance from the point Pc on the focus line of the cylindrical lens to the point 

Pm on the cylindrical lens is R0.  This relation is expressed by 

 

( ) ( ) ( ) 2
0

222 Rzzyyxx cmcmcm =−+−+−  (4.2) 

 

The direction from the point Pc to Pm is perpendicular to the direction of the focus 

line of the cylindrical lens.  This relation is expressed by 

 

( ) ( ) ( ) 0222 =−+−+− cmcmcm zzcyybxxa  (4.3) 

 

Combine Eqs. (4.1)-(4.3) and a two-degree equation of t is formulated:  
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The coefficients of t in each term of Eq. (4.4) are known or measurable and Eq. 

(4.4) can be solved.  There are two roots to the Eq. (4.4).  The larger root is always 

selected with the assumption that the point O2 is on the beginning side of the cylinder in 

the direction of D2.   

With the calculated solution to t, the coordinate of the point Pc is calculated using 

Eq. (4.1) and the zm coordinate of the point Pm is calculated using Eq. (4.3).   
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The element, corresponding to the point Pm on the cylindrical lens, in the 

measurement matrix has the value do.  The do plus the constant shift S is the distance from 

the point Po to the point Pc.  The 3D coordinate of the point Po is calculated by 

 

( )Sdo
cm

cm
co +

−
−

+=
PP
PPPP  (4.5) 

 

As the rotational stage rotates the cylinder, the center of the rotational stage and 

the focus line of the cylindrical lens are stationary, but the center of the cylinder changes 

and the measured surface region on the cylinder is different.   

The rotation is conducted to compensate the angular position change of the 

cylinder.  In practice, the cylinder rotates about the rotational stage center and the 

cylindrical lens is fixed.  In the model, the cylinder is assumed fixed and the cylindrical 

lens is rotated reversely about the center axis of the rotational stage.  This assumption 

does not change the calculated 3D representation of the cylinder surface because the 

movement is relative.  Let θ be the angular position of the cylinder, –θ is the angular 

position of the cylindrical lens about the center axis of the rotational stage.  The 

transformation about the center axis of the rotational stage is defined by [66] 

 

( ) ( )( )( ) ( ) )sin()cos(1)cos( 2222222 θθθ −−×+−−−⋅+−−+= OPDOPDDOPOP ooo
T
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 (4.6) 

 

where T
oP  is the coordinate of the point Po after the transformation by angular rotation –θ 

about the center axis of the rotational stage.   

Each element in the measurement matrix at every angular position of the cylinder 

is converted using the method described above to reach the 3D coordinate T
oP .  All the 

converted T
oP  form a 3D discrete representation of the cylinder surface in the Cartesian 
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coordinate system.  Based on this 3D representation, the cylindricity of the cylinder can 

be evaluated.   

 

4.2.3. Cylindricity evaluation 

Many cylindricity evaluation methods, based on least square and minimum zone 

[67-70], have been developed.  The least square evaluation with Gauss-Newton iteration 

is applied to estimate the cylindricity because the estimated reference cylinder using this 

method is unique and robust to a few isolated noisy points [34].  The reference cylinder, 

from which the deviations of all the measured points are determined, should be identified 

to calculate the cylindricity.  The cylindricity is defined as the range of the deviations of 

all the measured points from the reference cylinder.  This cylindricity evaluation method 

starts with an initial guess of the reference cylinder and conducts iterations until the 

estimation of the reference cylinder (radius and position of center axis) converges within 

a predefined error.   

Some transformations of the data points are conducted at the beginning of each 

iteration to simplify the process.  The data points are translated and rotated at the 

beginning of each iteration to make the trial reference cylinder of this iteration have its 

center axis lie on the y axis.  The Jacobian matrix is calculated to identify the incremental 

step for each parameter estimate.  Update the parameter estimates for the next iteration by 

adding the incremental step to each parameter with the reverse transformations.   

The translation and rotation are conducted to make the center axis of the reference 

cylinder lie on the y axis.   

The translation of the data points is achieved by: 
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where  
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the operator := means update the parameters on the left side, 

i is the number of converted points TP io, , i = 1,2,…, N, and 

N is the total number of measured points.   

 

The rotation of the data points is achieved by:  
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where 

U is the rotation matrix 
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θ1 is the angle to be rotated around the z axis, and 

θ2 is the angle to be rotated around the x axis.   

 

The angles θ1 and θ2 are determined by the condition:  
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Eq. (4.9) defines the transformation which makes the direction D1(a1, b1, c1) of 

the center axis of the cylinder parallel to the y axis (0, 0, 1).   
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The data points can be reversely transformed by: 
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where UT is the transpose of the matrix U.   

To identify the incremental step of each parameter estimate for next iteration, the 

Jocobian matrix is calculated by 
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where  
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R1 is the radius of the reference cylinder.   

 

With the center axis of the reference cylinder lie on the y axis, a1 = 0, b1 = 1, c1 = 

0, x1 = 0, and y1 = 0.  Eq. (4.13) can be simplified as 
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And each element in the Jacobian matrix J, described in Eq. (4.11), can have a 

significantly simplified expression: 
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The incremental steps of the parameter estimates are determined by 
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The parameter estimates are updated by 
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111 : RIRR += .   

 

4.2.4.  Registration adjustment 

The registration adjustment is developed to reduce the effect of parameter 

estimate errors on the cylindricity evaluation.  In the process described above, the true 

values of all the parameters are assumed to be known.  In practice, these values have to 

be estimated or measured with some errors.  The registration adjustment is applied before 

the cylindricity calculation of the whole cylinder to transform the converted 3D data 

points of each measurement so that the center axis of the reference cylinders of all the 

measurements match with each other.   

The center axis of the fitted cylinder of each measurement is estimated using the 

cylindricity calculation iteration process described in Sec. 4.2.3.  For example, the center 

point and the direction of the center axis are estimated as O1k and D1k for measurement k.  

The means of O1k and D1k, denoted as 1O  and 1D , respectively, are the target axis 

position for all the measurements.  The transformation of the data points for each 

measurement is determined by 
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where Ti is the rotation matrix determined by kk 11 DTD = .   

 

4.3.  Calibrations 

Calibrations are conducted to estimate the position of the rotational stage center 

axis, the position of the focus line of the cylindrical lens, the focal length of the 

cylindrical lens, and the constant shift of the reference point, which are assumed to be 

known in the mathematical model described in Sec. 4.2.   

A master cylinder with known radius and negligible cylindricity errors is used for 

the calibrations.  The cylindricity of the master cylinder is calculated using the 

mathematical model described in Sec. 4.2 with the initial guess of all the parameters to be 

estimated.  Within the possible range of all the parameters to be estimated, iterations are 

conducted to find an optimal combination of these parameters, which deliver the 

minimum cylindricity error.  This optimal combination of these parameters will be used 

for the mathematical model.  Multiple randomly-selected initial guess combinations of 

the parameters are used to reduce the sensitivity of the converged results to the initial 

guess.   

The computational time of this calibration may be long but this is a one-time 

process and can be implemented offline.  Once all the parameters are calibrated, the 

master cylinder is released.  Without changing the relative locations between the 

rotational stage and the cylindrical lens, a sample cylinder with variable diameters is 

fixed.  It is important to note that the center of the sample cylinder does not have to be 

maintained same as the master cylinder.  Centering and leveling of the sample cylinder 

on the chuck of the rotational stage will only change the center axis of the sample 

cylinder, not the rotational stage center axis.   

 

4.4.  Examples 

Simulations and an experiment are conducted to demonstrate the developed 

mathematical model.   
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4.4.1.  Simulations 

Three simulations, one for the cylindricity measurement, one for the calibration 

process, and the other for the error analysis, are conducted.   

 

4.4.1.1.  Cylindricity measurement 

The simulation for the cylindricity measurement assumes that the true values of 

the position of the center axis of the rotational stage, the position of the focus line of the 

cylindrical lens, the focal length of the cylindrical lens, and the constant shift of the 

reference point, are known.  The laser holographic interferometry measurements at 

different angular positions of a perfect cylinder are simulated excluding any measurement 

errors.  These simulated measurement results are input to the developed algorithm and the 

cylindricity of the cylinder is calculated.  By comparing the calculated cylindricity with 

the true cylindricity (= 0), the algorithm is evaluated.   

The true values of the following parameters are assumed.  The coordinate of point 

O0 which the center axis of the rotational stage goes through is O0 = (0, 0, 0.5) mm.  The 

direction D0 which the center axis of the rotational stage follows is D0 = (0, 1, 0).  The 

coordinate of point O1 which the center axis of the cylinder goes through at the angular 

position of 0º is O1 = (0, 0, 1) mm.  The direction D1 which the center axis of the cylinder 

follows at the angular position of 0º is D1 = (0, 0.9988, 0.0499).  The coordinate of point 

O2 which the center axis of the converging light goes through is O2 = (0, 0, –1) mm.  The 

direction D2 which the center axis of the converging light follows is D2 = (0.0995, 0.9950, 

0).  The focal length R0 of the cylindrical lens is 50 mm.  The radius R of the perfect 

cylinder is R = 12.5 mm.  The constant shift S of the reference point is assumed to be S = 

12 mm.  For each measurement, the angular and axial coverage of the cylinder surface 

are 90º and 15 mm, respectively.  The covered region of the cylinder surface in each 

measurement is represented by a measurement matrix with the dimension of 128 x 128.  

Four rotations with an angular incremental step of 90º are simulated.   

The 3D illustrations of the four simulated measurement matrices from the laser 

holographic interferometry system are shown in Fig. 4.3 with the sampling rate of every 8 
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points for the purpose of easy illustration.  The angular positions of the four 

measurements in Figs. 4.3(a) to 4.3(d) are 0º, 90º, 180º, and 270º, respectively.  The black 

dots correspond to elements in the measurement matrix.  The lines connecting the dots 

indicate the rows, which correspond to the direction closely perpendicular to the cylinder 

axis, in the measurement matrix.  Irregular shapes of the simulated measurements are 

observed and these shapes change as the angular position of the cylinder changes.  This is 

because center axes of the cylinder, the rotational stage, and the cylindrical lens do not 

match in 3D space.  Ideally, if these three center axes match, the measurement matrix will 

appear as the same flat plane at different angular positions.   

These four simulated measurement matrices and the corresponding angular 

positions of the cylinder are input to the cylindricity measurement program, which has 

the true values of the O0, D0, O2, D2, R0, and S.  Using the mathematical model described 

in Sec. 4.2, the 3D surface profile of the cylinder is generated, as shown in Fig. 4.4.  A 

mismatch is observed in the connecting regions between two adjacent sets of the 

converted 3D measurement data points.  This is because that the center axis of the 

rotational stage and the focus line of the cylindrical lens do not match.  However, this 

mismatch does not impact the estimated cylindricity because all the converted data points 

are still on the same cylinder surface.  The estimated cylindricity using the evaluation 

algorithm in Sec. 4.2.3 is 1.24 × 10 –14 mm.  Compared with the true value (= 0 mm), the 

algorithm is validated.   

 

4.4.1.2.  Calibration 

The same four simulated measurement matrices and the corresponding angular 

positions as in Sec. 4.4.1.1 are input to the calibration program.  However, the program 

does not have the information of the true values for the parameters: O0, D0, O2, D2, R0, 

and S.  The iteration process, described in Sec. 4.3, is applied to estimate these values.  In 

practice, these estimated values will be used as the true values for the cylindricity 

calculation.   

After totally 18,042 iterations for 10 min in MATLAB 7.0 on a standard PC, the 

final estimated parameters are O0 = (–2.9694×10–5, 0, –0.3718) mm, D0 = (1.5568×10–8, 
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1, –3.4482×10–9), O2 = (–3.1332×10–5, 0, –1.8718) mm, D2 = (0.099504, 0.99504, –

4.0115×10–8), R0 = 50.000 mm, and S = 12.001 mm, which delivers the cylindricity as 

7.8741×10–7 mm.  The estimated cylindricity converges to the true value (0 for a perfect 

cylinder) within the error smaller than 0.001 µm.  Those estimated parameters also 

converge very closely to the true values except the positions of O0 and O2.  However, the 

relative position between the estimated O0 and O2 is (1.7693×10–5, 0, –1.5000) mm, 

which is very close to the true relative position, which is (0, 0, –1.5) mm, between O0 and 

O2.  This is because wherever the center axis of the rotational stage and the focus line of 

the cylindrical lens are located, the generated cylinder surface profile will be the same if 

the relative position between the center axis of the rotational stage and the focus line of 

the cylindrical lens keeps the same.  These results demonstrate the convergence and 

feasibility of developed mathematical model.   

 

4.4.1.3.  Error analysis 

The cylindricity measurement error is analyzed by considering the parameter 

estimation errors in the cylindrical lens, the rotational stage, and the measurement system 

with the assumption that the cylindrical lens is ideal, i.e., there is no aberration to disable 

the cylindrical lens to focus at a straight line.   

The parameter estimation errors in the cylindrical lens include the focal length 

error ∆R0, the point position error ∆O2(∆x2, ∆y2, ∆z2), the direction error ∆D2(∆a2, ∆b2, 

∆c2) in which only two parameters are independent, and the constant shift error ∆S.  The 

rotational stage error is the angular position error ∆θ.  The measurement system errors 

include the lateral position errors ∆xm and ∆ym, and the height measurement error ∆do.  

The errors of these parameters are assumed to follow the normal distribution with a 

reasonable deviation.  The true values of all the parameters are also assumed known.   

The cylindricity measurement error is analyzed in two steps.  First, the error of 

each parameter is applied separately with all the other parameters equal to true value to 

quantify the sensitivity of the cylindricity measurement error using the Eqs. (4.1)-(4.6).  

Due to the complexity of the equations, explicit expression of the sensitivity is not 

derived.  The true value plus error is input directly to the cylindricity calculation program 
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to calculate the cylindricity error.  Second, Monte Carlo simulation is conducted with the 

effects of all the parameters errors included simultaneously in the cylindricity 

measurement.  The error of each parameter is assumed to follow the normal distribution.   

The true values of these parameters are assumed to be the same as in Sec. 4.4.1.1.  

The errors of each parameter are assumed to follow the normal distribution with the 

expected value equal to 0.  The 3σ of these parameters are: ∆R0 = 0.010 mm, ∆O2 is 

within a sphere of 0.010 mm radius centered at the true position O2, ∆D2 is within 0.05º 

range from the true direction D2, ∆S = 0.010 mm, ∆xm = 0.15 mm, ∆ym = 0.15 mm, ∆d0 = 

1 µm, and ∆θ = 0.04º.   

The effect of each parameter error on the final cylindricity measurement is shown 

in Table 4.1.  The first set of the cylindricity error is due to the effect of the parameter 

estimation error of the cylindrical lens.  With the error of each parameter (3σ) listed in 

Table 4.1, the corresponding cylindricity measurement errors before and after the 

registration adjustment are recorded.  The registration adjustment can significantly reduce 

the cylindricity measurement error induced by the cylindrical lens parameter estimation 

errors, except the position estimation error ∆O2.  This is because position error ∆O2 

makes the converted 3D representation out of the cylindrical shape and this error cannot 

be rectified by adjusting the measurement data to match the reference cylinder of 

different measurements.  The 0.05º ∆D2 error makes one end of the focus line 0.079 mm 

away from the true position for a 45 mm long cylinder, which is used in the simulation.  

After converting the error to the same scale, it is observed that the cylindricity 

measurement error is most sensitive to position estimation error ∆O2 of the point on the 

focus line.  Only 0.010 mm ∆O2 introduces 0.030 mm cylindricity measurement error.   

The other two sets of Table 4.1 are the effects of the system measurement error 

and the rotational stage error.  The 0.15 mm ∆xm and ∆ym are the lateral resolution of the 

laser holographic interferometry system.  The 1 µm ∆d0 is the height measurement 

accuracy of the system.  The 0.04º ∆θ is the calibrated accuracy of the rotational stage 

used in this research.  The registration adjustment does not affect any effect of the system 

measurement error or the rotational stage error because these two kinds of errors change 

the position of the measured data points symmetrically about the center axis.  The lateral 
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position error of the system has an important effect on the cylindricity measurement.  The 

height measurement error of the system is linearly mapped to the cylindricity 

measurement error.  The effect of the angular positioning error of the rotational stage on 

the cylindricity measurement is trivial.   

The Monte Carlo simulation is conducted to include all the error effects 

simultaneously and investigate the performance of the cylindricity measurement.  The 

same parameter estimation errors listed in Table 4.1 are used and 1000 simulations are 

conducted.  The histogram of the simulated cylindricity measurement error after the 

registration adjustment is shown in Fig. 4.5.  The minimum cylindricity measurement 

error is 0.024 mm.  The mean and standard deviation of the cylindricity measurement 

error are 0.097 mm and 0.054 mm, respectively.   

 

 

4.4.2.  Experiment 

This experiment applies the Coherix Shapix 2000 laser holographic 

interferometry system with a cylindrical lens, the rotational stage, and a fine adjustment 

mechanism to measure a centerless ground steel cylinder.  The system configurations, the 

experiment procedures, the measurement results, and the processing are elaborated.   

 

4.4.2.1.  System configurations 

The system configuration of the cylindricity measurement experiment is shown in 

Fig. 4.6.  All the components are inside the measurement cabinet of the laser holographic 

interferometry system.  The rotational stage HAAS HA5C is fixed on the vibration 

isolated table.  A centerless ground steel cylinder (25.4 mm in diameter) is used as a 

master cylinder to verify the developed mathematical model.  The master cylinder is 

fixed in the chuck, which is attached to the rotational stage.  There are 4 centering screws 

(only 2 visible in Fig. 4.6), positioned at 0º, 90º, 180º, and 270º around the circumference 

of the chuck to adjust the center position of the master cylinder.  The cylindrical lens, 

which is bonded to the fine adjustment mechanism with 4 degrees of freedom, is 
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positioned above the master cylinder.  A granite plate is positioned beside the master 

cylinder.  This granite plate, used as a height datum, is fixed through the whole 

measurement process and measured with the laser going down directly to the surface.  

 

4.4.2.2.  Adjustments 

Adjustment is conducted before the measurement.  Three components, the master 

cylinder, the cylindrical lens, and the granite plate, are adjusted in sequence.   

The master cylinder is centered after it is fixed in the chuck.  This centering is 

conducted by adjusting the four centering screws on the chuck with a dial indicator in 

contact with the master cylinder surface.  The runout of the master cylinder after 

centering is less than 25 µm.   

The cylindrical lens is adjusted by the fine adjustment mechanism to have good 

modulations at 0º, 90º, 180º, and 270º positions.  The mechanism has four degrees of 

freedom: translation in x direction, translation in z direction, rotation about x axis, and 

rotation about z axis.   

The orientations of the granite plate are adjusted by the three adjustment screws 

underneath to have good surface reflectivity.  This granite plate is fixed after the 

adjustment and used as a height datum.  This will be elaborated in Sec. 4.4.2.4. 

After the adjustment, measurement of the cylinder surface and the granite plate is 

conducted in one image capturing.  Between two consecutive measurements, the 

rotational stage is rotated by inputting an angle value on the control panel with the 

resolution of 0.001º.   

 

4.4.2.3.  Measurement results 

The surface area covered in one measurement is about 9º of the cylinder and 

about 42 mm axial length.  Each measurement contains more than 20,000 points.  Totally 

there are 58 measurements, which add up to more than 1 million points.   

Figures 4.7 to 4.10 show four typical height measurement results obtained by 

Coherix Shapix 2000 system.  The angular positions of these four measurements are 
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333.140º, 62.227º, 149.988º, and 244.377º, respectively, with about 90º spacing.  Fig. 

4.7(a) is a 2D grayscale illustration of the measurement matrix.  The left rectangle 

corresponds to the master cylinder surface.  The right rectangle is for the granite plate.  

Two lines, Line 1 from –y to +y and Line 2 from –x to +x, are drawn across the grayscale 

map in Fig. 4.7(a).  The height profiles along these two lines are illustrated in Figs. 4.7(b) 

and 4.7(c), respectively.  These two lines are drawn at the same positions in Figs. 4.8(a), 

4.9(a), and 4.10(a) as in Fig. 4.7(a).  Compare the profiles at these four angular positions 

along Line 1 and Line 2, respectively, it is observed that at angular positions of 333.140º 

and 244.377º, the trend of the master cylinder surface leans upward from –y to +y; 

whereas the trend at the angular positions of 62.227º and 149.988º is opposite.  This 

indicates that the center axis of the rotational stage and the center axis of the cylinder do 

not match in the 3D space.  The height positions of the granite plate change between the 

four angular positions.  This is because the reference point, which has the height value 

equal to 0 in the measurement matrix, changes as the cylinder rotates.  The trend of Line 

2 at the angular positions of 333.140º and 62.227º leans downward from –x to +x; 

whereas the trend at the angular positions of 149.988º and 244.377º is opposite.   

 

4.4.2.4.  Processing 

The height measurement data of the master cylinder from the 58 measurements 

are first adjusted with reference to the height measurement data of the granite plate, 

which is fixed through the whole measurement process and used as common height 

datum.  The reason of this adjustment is that the Coherix Shapix measurement is relative, 

i.e., all the height data points in one measurement are relative to a reference point, and 

this reference point changes as the master cylinder rotates.  The measured height of the 

granite plate from all the measurements is compared with the first measurement.  The 

difference of height is least square fitted by a plane and the trend of this plane will be 

subtracted from the corresponding height measurement data of the master cylinder.   

The row and column coordinates of the element in the height matrix of the 

Coherix Shapix 2000 measurement are converted into the x and y coordinates.  All the 58 

adjusted and converted measurement data of the master cylinder together with the 
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corresponding angular positions are input to the program.  Initial guess are generated to 

estimate O0, D0, O2, D2, R0, and S.  Then iterations are conducted to find the optimal 

values of these unknown parameters, which deliver the minimum cylindricity error of the 

master cylinder.  To avoid the problem of iteration sensitivity to initial guess, multiple 

initial guess of the randomly selected unknown parameters are used.   

The converged solution is reached after 4568 iterations for more than 33 hours.  

Figure 4.11 shows the generated 3D surface profile of the master cylinder surface with 

the final estimation of these parameters.  The estimated values of all the unknown 

parameters are: O0 = (160.3313, 0, –12.4622) mm, D0 = (–0.1369, 0.9796, –0.1469), O2 = 

(162.1639, 0, –14.2365) mm, D2 = (–0.1467, 0.9783, –0.1466), R0 = 251.12 mm, and S = 

123.22 mm, which delivers the cylindricity error as 123 µm.   

The master cylinder was measured by the contact-based Taylor Hobson TalyRond 

265 system.  The cylindricity of the same surface region was 8 µm with 2 mm spacing 

between two adjacent cross-sections of the cylinder.  Compared with this contact-based 

measurement result, a 115 µm error in the laser holographic interferometry measurement 

exists.  There are four possible reasons for this error.  First, the possible runout error of 

the rotational stage may have a significant effect on the cylindricity evaluation.  Second, 

the measurement data from the laser holographic interferometry system is not rectified 

and some significant errors in the lateral coordinates x and y may exist.  Third, the 

iteration process to estimate the system configuration parameters may not find the 

globally optimal combination.  Fourth, the cylindrical lens used in this research is off-the-

shelf and some significant aberrations of the cylindrical lens may exist.  A calibration 

process of the cylindrical lens shall be developed.   

Different error sources are quantified to analyze their contributions to the 115 µm 

cylindricity measurement error.  The maximum runout error of the rotational stage, which 

is used in this research, is the 10 µm [71].  This indicates that the center axis of the 

rotational stage should be within a virtual 10 µm radius cylinder centered at a stationary 

and perfect straight line.  The maximum cylindricity measurement error introduced by the 

10 µm runout of the rotational stage is 20 µm.  The lateral coordinate measurement errors 

∆xm (= 0.15 mm) and ∆ym (= 0.15 mm) of the laser holographic interferometry system 
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will have the cylindricity measurement errors equal to 15 µm and 29 µm, respectively, as 

shown in Table 4.1.  The 1 µm height measurement accuracy of the laser holographic 

interferometry will generate the 2 µm cylindricity measurement error.  The total error 

contribution of the laser holographic interferometry is 46 µm.  The iteration process 

described in Sec. 4.3 can also have some system parameter estimation errors.  Assume 

the system parameter estimation errors are ∆R0 = 10 µm, ∆S = 10 µm, and ∆O2 = 10 µm, 

the cylindricity measurement errors introduced by these errors are calculated using the 

Eqs. (4.1)-(4.6) as 0.8 µm, 0.4 µm, and 30 µm, respectively.  The total error contribution 

of these assumed system parameter estimation errors is 31 µm.  The aberration of the 

cylindrical lens also contributes to the cylindricity measurement error.  Assume there is 5 

µm error in focusing the light to the focus line of the cylindrical lens.  This focusing error 

will generate another ∆O2 up to 5 µm for all light directions and introduce up to 15 µm 

cylindricity measurement error.  These four error contributions, 20 µm by the 10 µm 

runout of the rotational stage, 46 µm by the lateral and height measurement errors of the 

laser holographic interferometry system, 31 µm by the assumed system parameter 

estimation errors ∆R0 = 10 µm, ∆S = 10 µm, and ∆O2 = 10 µm, and 15 µm by the 

assumed 5 µm focusing error, add up to about 112 µm cylindricity measurement error.  

This quantitatively explains the error sources of the cylindricity measurement.  More 

experiments shall be conducted to verify the assumed system parameter estimation errors 

and evaluate the aberrations of the cylindrical lens.   

 

4.5. Concluding remarks 

A mathematical method was developed to utilize the laser holographic 

interferometry with customized optical and mechanical configurations for flexible and 

full surface measurement of cylinders with variable diameters.  A cylindrical lens was 

used to customize the optical system and enable the laser holographic interferometry for 

the inspection of cylinders.  A rotational stage was applied to rotate the cylinder and the 

whole circumference of the cylinder can be measured.  The developed mathematical 

model converted the laser holographic interferometry measurements into the 3D 
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representation of the cylinder surface from which the cylindricity can be calculated.  The 

simulation demonstrates that the developed method can estimate the system configuration 

parameters with good accuracy.  The effect of the estimation error of system 

configuration parameters and the measurement error on the cylindricity measurement was 

analyzed.  The experiment with the master cylinder was conducted and the cylindricity 

was estimated with an error of 115 µm, which was mainly due to the four possible error 

sources.   

Two possible future researches can follow.  First, this method assumes no 

aberration in the cylindrical lens.  A calibration procedure of the cylindrical lens should 

be developed to accommodate the aberrations of the optical system.  Second, a more 

robust and time-efficient calibration process should be developed to improve the 

performance of the estimation of the unknown parameters.   
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Table 4.1.  The cylindricity measurement error due to the parameter estimation errors.   

Maximum cylindricity error (mm) 
Parameter estimation error 

(3σ) Before registration 
adjustment 

After registration 
adjustment 

∆R0 = 0.010 mm 0.002 0.001 

∆O2 = 0.010 mm 0.029 0.030 

∆D2 = 0.05º 0.043 0.010 

∆S = 0.010 mm 0.0008 0.0004 

∆xm = 0.15 mm 0.015 0.015 

∆ym = 0.15 mm 0.028 0.029 

∆d0 = 1 µm 0.002 0.002 

∆θ = 0.04º 0.000 0.000 
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Fig. 4.1.  Conceptual system design of the laser holographic interferometry system: (a) 
flat object measurement and (b) cylindricity measurement.   
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Fig. 4.2.  3D illustration of the geometric relations in the mathematical model for the 

cylindricity measurement with the laser holographic interferometry system.   
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 (c) (d) 

Fig. 4.3.  3D illustration of four simulated laser holographic interferometry measurements 
of the cylinder with O0 = (0, 0, 0.5) mm, D0 = (0, 1, 0), O2 = (0, 0, –1) mm, D2 = (0.0995, 
0.9950, 0), R = 12.5 mm, and S = 12 mm (O1 = (0, 0, 1) mm and D1 = (0, 0.9988, 0.0499) 

at the 0º angular position of the cylinder):  (a) at 0º angular position, (b) at 90º angular 
position, (c) at the angular position of 180º, and (d) at the angular position of 270º of the 

cylinder.   
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Fig. 4.4.  Generated cylinder surface profile from the simulated data (cylindricity = 
7.9×10-7 mm).   
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Fig. 4.5.  The cylindricity measurement error distribution simulated by the Monte Carlo 

method.   
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Fig. 4.6.  System configurations of the cylindricity measurement.   
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 (b) (c) 

Fig. 4.7.  Height measurement of the master cylinder at the angular position of 333.140º: 
(a) 2D color map, (b) height profile along Line1 from left to right in (a), and (c) height 

profile along Line 2 from top to bottom in (a).   
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 (b) (c) 

Fig. 4.8.  Height measurement of the master cylinder at the angular position of 62.227º: 
(a) 2D color map, (b) height profile along the Line 1 from left to right in (a), and (c) 

height profile along the Line 2 from top to bottom in (a).   
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 (b) (c) 

Fig. 4.9.  Height measurement of the master cylinder at the angular position of 149.988º: 
(a) 2D color map, (b) height profile along the Line 1 from left to right in (a), and (c) 

height profile along the Line 2 from top to bottom in (a).   
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 (b) (c) 

Fig. 4.10.  Height measurement of the master cylinder at the angular position of 244.377º: 
(a) 2D color map, (b) height profile along the Line 1 from left to right in (a), and (c) 

height profile along the Line 2 from top to bottom in (a).   
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Fig. 4.11.  3D illustration of the final estimation of the master cylinder.   
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Chapter 5 

Conclusions and Future Work 

 

 

5.1.  Conclusions 

This research developed three new methods to improve the laser holographic 

interferometry for the 3D precision and full surface measurement of manufactured 

components.  The flatness evaluation errors for the high definition measurement system 

were investigated.   

A hologram registration method without using targets was developed in Chapter 2 

for the laser holographic interferometry measurement of objects larger than the field of 

view (FOV).  The cross-correlation analysis was used to identify the translation and 

overlapped regions, which determine the tilt and shift correction for hologram registration.  

The proposed method was validated using two examples with different approaches.  The 

first example, a wheel hub smaller than the FOV, demonstrated only 0.1 µm discrepancy 

of the surface flatness between the registered and standard measurements.  The second 

example, an engine head combustion deck surface, was larger than the FOV.  The 

registered surface measurements were compared to that of CMM with only 2.5% 

discrepancy of the peak-to-valley flatness.  This hologram registration method enables 

the µm-level precision measurement of large objects.   

A phase unwrapping method was developed in Chapter 3 to mathematically 

increase the height measurement range of the laser holographic interferometry while 

maintaining the same level of accuracy and resolution.  Three approaches, including the 

masking and recovery, dynamic segmentation, and phase adjustment for pixels in thin 

boundary regions, were developed to effectively avoid the divergence problem of 
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boundary pixels.  This method successfully solves the phase unwrapping problem of the 

laterally discontinuous surfaces and is validated using an example of the automatic 

transmission valve body.   

A mathematical method was developed in Chapter 4 to utilize the laser 

holographic interferometry with customized optical and mechanical configurations for 

flexible and full surface measurement of cylinders with variable diameters.  The 

developed mathematical model converts the laser holographic interferometry 

measurements into the 3D representation of the cylinder surface from which cylindricity 

was calculated.  The simulation demonstrated that the developed method can estimate the 

system configuration parameters with good accuracy.  The effect of the estimation error 

of system configuration parameters and the measurement error on the cylindricity 

measurement was analyzed.  The experiment was conducted to measure the master 

cylinder with negligible cylindricity errors and the feasibility of the developed method 

was verified.   

A preliminary study was conducted in Appendix C to analyze the flatness 

evaluation errors for high definition measurements.  Two commonly used methods, least 

square and minimum zone, were analyzed in the estimation error of the reference plane 

for flatness evaluation.  The widely-used peak-to-valley flatness definition and two 

proposed flatness definitions, 6σf and modified peak-to-valley, were assessed.  Five 

surface profiles with the random measurement errors were generated to simulate the 

flatness evaluation process.  The results showed that the least square method with the 

modified peak-to-valley definition has the good potential among the analyzed methods to 

effectively evaluate the flatness with good noise robustness for the high definition 

measurement system.   

 

5.2.  Future work 

This research will continue in two areas.  First is to further improve the 

performance of the cylindricity measurement with the laser holographic interferometry 

system.  Third is to develop a more comprehensive method to quantitatively evaluate 
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different geometrical form measurement errors for the high definition measurement 

system.   

 

5.2.1.  Performance improvement of cylindricity measurement 

The cylindricity measurement methods developed in Chapter 4 is verified in 

simulations to be capable of estimating the system configuration parameters and 

evaluating the cylindricity with good accuracy.  The conducted experiment demonstrates 

the feasibility of this method in practice but the cylindricity evaluation accuracy needs 

improvement.   

To further improve the performance of the cylindricity measurement, two 

research investigations will follow.   

 

• Calibration of cylindrical lens: The cylindrical lens used in Chapter 4 is off-the-shelf 

and no calibration was conducted.  An aspherical cylindrical lens with minimum 

aberrations should be utilized to advance the performance of the method.  An 

effective calibration method of the cylindrical lens, using a master cylinder with 

negligible cylindricity errors and precisely rectified grooves, as shown in Fig. 5.1, 

should be developed.  The rectified grooves will appear in a possibly distorted way in 

the generated 3D representation of the cylinder due to the aberrations of the 

cylindrical lens.  By comparing the measured profile with the rectified profile of the 

grooves, the cylindrical lens can be calibrated.   

• Improvement of the iteration process.  Iteration is conducted in the mathematical 

method described in Chapter 4 to estimate the unknown system configuration 

parameters.  The converged results are sensitive to the initial guess though multiple 

combinations of randomly selected initial guess are applied because the optimization 

search is gradient-based.  More robust and efficient optimization methods will be 

explored to reach a more reliable estimation of these system configuration parameters.   
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5.2.2.  Error analysis of geometrical form evaluation for high definition measurements 

The huge number (more than 1 million) of data points by the high definition 

measurement system imposes a great challenge on how to evaluate the geometrical form 

variation because the huge number of data points makes the small probability event of 

large measurement error happen frequently.  The preliminary analysis of the flatness 

evaluation error for high definition measurements was conducted in Appendix C.  The 

reference plane estimated by least square method for flatness evaluation was 

demonstrated more robust to measurement errors than the minimum zone method.  And 

the least square method with the modified peak-to-valley flatness definition has the 

potential among the analyzed methods to effectively evaluate the flatness with good noise 

robustness for the high definition measurement system.  However, a more comprehensive 

theoretical analysis to quantitatively evaluate the geometrical form variations for the high 

definition measurement system should be conducted.   

 

• Flatness evaluation analysis: The flatness is determined in two steps.  First, a 

reference plane, from which the deviations of all the measured points are referred, is 

identified.  Second, some parameter, such as peak-to-valley deviations of all the 

measured points, will be calculated as the flatness.  In this research, a more 

comprehensive mathematical method will be developed to quantitatively analyze 

error flows starting from each measured points to the final evaluated flatness result 

for the high definition measurement system.  Some more robust and efficient flatness 

evaluation methods can be developed.   

• Cylindricity and other geometric form analysis: The research work in the flatness 

evaluation analysis for high definition measurements will be extended to other more 

complicated geometric forms, such as cylinder and sphere.   
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Fig. 5.1.  Master cylinder with negligible cylindricity errors and precisely rectified 

grooves.   
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Appendix A 

Comparison Matrix of Six 3D Measurement Systems 

 

 

The specifications of six different 3D measurement systems are compared.  The 

comparison matrix is developed as following with the help of Robert Waite and Bill 

Haukkala from DaimlerChrysler and Dr. Lianxiang Yang from Oakland University.   
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Appendix B 

Laser Holographic Interferometry and Performance Evaluation 

 

 

B.1.  Introduction 

The holographic interferometry technology was initiated by Leith and Upatnieks 

[72-74] and invented by Stetson and Powell in 1960s [75].   

The laser holographic interferometry includes the following important features: 

 

• High accuracy: For a typical laser holographic interferometer, the height 

measurement accuracy of machined metal surfaces is 0.30 µm for the 0.3 mm height 

measurement range.   

• No shadowing or occlusion: Shadowing occurs when the object cannot be illuminated 

but is visible to the sensor.  Occlusion occurs when the object is illuminated but 

invisible the sensor.  Either shadowing or occlusion does not exist in the laser 

holographic interferometry because the object is illuminated and viewed from the 

same direction.   

• No moving parts: The instrument generates a 3D image of the entire FOV without 

scanning.  The process is accomplished by flood illuminating the object and 

collecting the light with a 2D CCD camera.  With all parts fixed, the instrument has 

high reliability and repeatability.   

 

In this appendix, the principles of the laser holographic interferometry are 

described in Sec. B.2.  The configurations and specifications of a state-of-the-art laser 
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holographic interferometer are presented in Sec. B.3.  The performance is evaluated in 

Sec. B.4.   

 

B.2.  Principles of laser holographic interferometry 

The 3D profiling of the laser holographic interferometry is based on the coherence 

property of light wave.  The mathematical descriptions of light waves and their 

interference are introduced as following [76].   

 

B.2.1.  Mathematical expression of light wave 

Light is an electromagnetic wave.  For a plane light wave u, the electromagnetic 

field at an arbitrary point (x, y, z) is generally described as, 

 

[ ]tUtzyxu πυϕ 2cos),,,( −=  (B.1) 

 

where  

 

u represents the field in an electromagnetic wave,  

U is the wave amplitude, 

ϕ is the phase which is a function of x, y, and z,  

υ is the frequency of the light wave, and 

t is the time.   

 

Figure B.1 shows the field distribution of the plane wave in 3D space at a time 

spot.  At each plane perpendicular to the wave propagation direction, marked by k in Fig. 

B.1, the phases ϕ are constant at a time spot.   
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The observable quantity in the image recording media is the light intensity I, 

which is defined as the squared amplitude of the light wave, i.e., I = U2. 

 

B.2.2.  Interference 

Interference occurs when two plane waves u1 (= )2cos( 11 tU πυϕ − ) and u2 

(= )2cos( 22 tU πυϕ − ) with the same frequency overlap.  The interfered wave is u = u1 + 

u2.  The light intensity in the CCD camera of the interfered wave is expressed as,   

 

ϕϕϕ ∆++=−++=+== cos2)cos(2 21212121
2
2

2
1

2
21

2 IIIIUUUUuuuI  (B.2) 

 

where 21 ϕϕϕ −=∆  as the phase difference between the two waves.   

No light source can emit light of a single frequency practically and Eq. (B.2) 

should be modified as 

 

ϕγ ∆++= cos2 2121 IIIII  (B.3) 

 

where γ is a complex degree of coherence term as a measure of the ability of the two 

wave fields to interfere.   

 

B.2.3.  Height measurement in laser holographic interferometry  

The height of the measurement object is extracted by the phase-shifting and multi-

wavelength tuning techniques.   

The setup of the laser holographic measurement system is shown in Fig. B.2(a).  

The optical measurement unit generates the laser beam for measurement and acquires the 

hologram for computation.  The optical measurement unit and object are both placed on a 

vibration isolated table to ensure the mechanical stability.  An off-axis parabolic mirror is 
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located on the top of the machine to collimate the carrier beam uc from the optical 

measurement unit to the object.  The laser beam reflected from the object carries the 

surface height information and reflects by the parabolic mirror back to the optical 

measurement unit for processing.   

The setup of the Twyman-Green interferometer [76] inside the optical 

measurement unit is shown in Fig. B.2(b).  The laser beam from a tunable laser source is 

split by the beam splitter into two coherent laser beams: the reference beam ur and carrier 

beam uc.  The reference beam ur is a plane wave, i.e., phase ϕr is a constant across any 

plane perpendicular to the wave propagation direction.  The reference beam ur is reflected 

by a reference mirror, which is moved by a piezoelectric motor to apply the phase-

shifting for measurement.  The carrier beam uc, re-directed by a mirror, is enlarged by a 

beam expander and directed to the parabolic mirror and object.  The carrier beam uc 

reflected from the object surface has the phase ϕc modulated by the height of the object.  

The Fourier transform method [76,77] is applied to analyze the hologram to extract the 

3D surface profile of the object.   

In this research, the carrier beam after collimation by the parabolic mirror is 300 

mm x 300 mm in size, which is the FOV of the measurement system.   

Two techniques, phase-shifting and multi-wavelength tuning, are applied to 

measure the height of an object surface.   

 

B.2.3.1.  Phase-shifting 

The phase-shifting is applied to convert the intensity of each pixel in the CCD 

camera into the height of the corresponding point on the object surface.  The light 

intensity I generated by the two interfering beams ur and uc is [76]: 

 

ϕγ ∆++= cos2 crcr IIIII  (B.4) 
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where cr ϕϕϕ −=∆  is the phase difference between the reference beam and the carrier 

beam.    

 

The phase difference ∆ϕ ranges from −π to π and can be linearly mapped to the 

height measurement ranging from −1/4 wavelength to 1/4 wavelength.  To solve ∆ϕ, the 

phase-shifting technique [78] is applied by moving the piezoelectric stage (shown in Fig. 

B.2(b)) with small, incremental steps.  Moving the piezoelectric stage introduces a phase 

shift α and Eq. (B.4) can be rearranged as:   

 

( )αϕ +∆+= cosnmI  (B.5) 

 

where  

m = cr II + , 

n = γcr II2 , and 

α is the given phase shift.   

 

When the phase of the reference beam is shifted by three given values α1, α2, and 

α3, three light intensities )cos( kk nmI αϕ +∆+=  (k = 1, 2, and 3) can be measured.  The 

phase difference ∆ϕ, which corresponds to height, on each pixel is [76]:  

 

321231132

3212311321
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=∆ −  (B.6) 

 

In practice, more than three phase shifts, which introduce a set of over-determined 

equations, are applied to obtain a more numerically stable solution.  The least square 
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method [76] has been derived to solve ∆ϕ of a set of over-determined equations.  In this 

research, four or five 100 nm incremental movements of the piezoelectric stage are 

utilized to generate the phase shift.   

 

B.2.3.2.  Multi-wavelength tuning 

To increase the range of height measurement, the multi-wavelength laser source, 

so called tunable laser, is applied.  If a single wavelength laser source is used, the overall 

height range of all the pixels in the CCD camera must be smaller than ½ of the laser 

wavelength to avoid the ambiguity in the phase domain.  This limits the range of height 

measurements.  The use of multi-wavelength tuning can overcome this obstacle.  

The multi-wavelength laser can be generated using a laser-cavity design [79].  

The laser beam in the cavity strikes a diffraction grating at near grazing incidence, i.e., an 

incidence angle near 90°.  The laser diffracts off the grating at different diffraction angles 

with different wavelengths.  Each diffraction angle corresponds to a specific wavelength.  

In this study, a tunable diode laser, Velocity made by New Focus, can generate infrared 

wavelengths ranging from 830.80 nm to 850.60 nm.  During measurement, the laser is 

tuned to 16 wavelengths with a constant step change of wavelength ranging from 0.02 nm 

to 1.00 nm.   

In holographic interferometry, the concept of reference point is applied to 

improve the measurement accuracy and reduce the adverse effect caused by mechanical 

vibration from the surrounding environment.  A reference point is arbitrarily selected in 

the measurement region.  The phase of the reference point is designated as 0 by shifting 

the phase of all measurement points by a constant value.  The height h and phase 

difference ∆ϕ of all other points are calculated relative to the reference point.   

The height h is extracted by tuning the wavelength of the laser source and 

calculating the change of the phase difference ∆ϕ for each point [80].  If the wavelength 

λ1 is used, the phase difference is ∆ϕ1, then 11 4 λπϕ h=∆ .  If the wavelength is changed 

to λ2, the phase difference is 22 4 λπϕ h=∆ .  The height h can be solved by combining 

the two relations as below: 
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Eq. (B.7) shows that the height measurement range depends on the wavelength 

tuning step (λ2 – λ1).  A smaller wavelength tuning step generates a larger height 

measurement range.  If the tuning step (λ2 – λ1) is 0.02 nm, the wavelength is 830 nm, 

and the change of phase difference ( )21 ϕϕ ∆−∆  is 2π, then the height measurement range 

is 17 mm.  If the tuning step (λ2 – λ1) is increased to 1.00 nm, the height measurement 

range is reduced to 0.34 mm.  The tradeoff of the increase in height measurement range is 

the decrease of resolution and accuracy.   

In practical holographic measurement, more than two wavelengths are used to 

achieve a more robust solution.  In this study, 16 wavelengths, marked as λ1 to λ16 were 

applied.  During the time interval, 4 or more phase shifts are conducted to calculate ∆ϕ 

for each wavelength.  The change of wavelength occurs at a constant rate with period ∆t 

and a constant tuning step ∆λ (∆λ = λ2 – λ1 = λ3 – λ2 = ... = λ16 – λ15).  At each 

wavelength, only the calculated phase difference ∆ϕ was selected as the angle of a 

complex number with unit magnitude.  As the wavelength changes, the complex number 

rotates around the origin of the complex plane at the frequency fs [81].  The Fourier 

transform analysis of the 16 complex values at 16 wavelengths generates a peak at fs in 

the frequency domain.  The height h can be expressed as [81]:  

 

βλ /2
1sfh =  (B.8) 

 

where β is a constant which determines the wavelength tuning speed, i.e., ∆λ (=β∆t).  

The wavelength λ1 and the constant β are known parameters.  The height h on each point 

can be solved using Eq. (B.8) with the identified fs.   
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The 3D surface profile is extracted from the measured hologram using the method 

described above.  The height measurement calibration and the median filtering [82] are 

applied to reduce the noise.   

 

B.3.  Configurations of the laser holographic interferometer  

The optical configurations of the laser holographic interferometer system under 

this research are shown in Fig. B.3.  All the optical components are fixed.  The laser 

comes out from the laser source, goes through a set of lenses, and reaches the 

beamsplitter which is inside of the black box in front of the CCD camera.  A certain 

percent amount of the beam is transmitted as reference beam and reaches the mirror 

controlled by the piezoelectric translator in the reference arm.  The other amount of the 

beam is reflected as carrier beam and goes through the neutral density (ND) filter.  A 

series of ND filter are available for different surface reflectance.  The flipper is designed 

to further reduce noise of measurement.  The carrier beam then travels up to the parabolic 

mirror, which is positioned on the top of the machine.   

An example measurement of an automatic transmission valve body is shown in 

Fig. B.4.  The part is located on the tip-tilt support, which is used to level measurement 

surfaces.  The complicated surface region of the valve body can be selected by the 

masking tool in the software.   

The laser source is the Velocity tunable diode laser, provided by New Focus Co.  

The tunable wavelength range is from 831.00 to 853.00 nm.  The minimum wavelength 

tuning step is 0.02 nm [83].  The maximum tuning speed is 8 nm/s [83].  The CCD 

camera is Dalstar DS-12-01M30, with 1024 x 1024 pixel resolution.  The data sampling 

rate is 40 MHz, 30 frames per second with 12 bit digitization [84].   

The basic claimed specifications of a typical laser holographic interferometer, 

Coherix Shapix 1000, are as following [85,86].  The FOV is 300 mm x 300 mm.  The 

largest depth-of-field is 17 mm.  For single wavelength measurement, the accuracy is 

0.050 µm and the repeatability is 0.020 µm.  For multi-wavelength measurement, the 
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accuracy is 0.50 µm and the repeatability is 0.20 µm.  The claimed accuracy and the gage 

R&R will be evaluated in Sec. B.4.   

 

B.4.  Performance evaluation 

Two kinds of parts, an artifact Step Gage, as shown in Fig. B.5, and five 

automatic transmission valve bodies from the production line, one of them shown in Fig. 

B.8, are used to evaluate the accuracy and the gage repeatability and reproducibility 

(R&R) of the laser holographic interferometer.   

 

B.4.1.  Accuracy evaluation 

B.4.1.1.  Artifact 

The 48 mm x 48 mm Step Gage, made of stainless steel, has four ground surfaces 

denoted as A, B, C, and D, as shown in Figs. B.5(a) and B.5(b).  The ground surfaces, 

each of 12 mm x 48 mm, are specular with about 0.2 µm Ra roughness.  Three Step 

Heights, designated as I, II, and III in Fig. B.5(b), are used to evaluate height 

measurement accuracy of the laser holographic interferometer.  The nominal value of 

Step Heights I, II, and III are 5, 15, and 35 µm, respectively.  The target values of step 

heights are measured using the Taylor Hobson Form Talysurf profilometer.  Ten 

measurement traces, all parallel to each other and perpendicular to the line between two 

adjacent step surfaces, are used to measure the Step Heights I, II, and III.  An example of 

the profilometer measurement trace on the surface is shown in Fig.B.6.  The algorithm 

presented in Sec. B.4.1.3 is used to calculate the step height.  The average of the five 

measurements is used as the target value.  As shown in Table B.1, target values for Step 

Heights I, II, and III are equal to 3.9, 13.6, and 32.1 µm, respectively.   

 

B.4.1.2.  Measurement procedures 

The Step Gage is positioned in the middle of the field of view of the system.  

Three measurement groups, each of 11 measurements without moving the part, are 
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conducted.  No powder spray is applied on the surface for each measurement.  Between 

each group, the part is repositioned in the field of view.   

 

B.4.1.3.  Step height calculation 

The least squares method is used to find the step height between two segments of 

data points.  Three Step Heights I, II, and III, as shown in Fig. B.5(b), are referenced 

from the datum surface A.  The points representing surface J are denoted as the vector PJi, 

where J = A, B, C, and D, i = 1, 2, …, nJ, and nJ is the number of points on surface J.  

The middle point of surface J, denoted as PJM, is calculated by: 

 

PJM = 
J

n

1i
Ji

n

J
∑
=

P
 (B.9) 

 

The vector from a point in the segment to the middle point of plane J is PJi–PJM, J 

= B, C, and D, and i = 1, 2, …, nJ.  Two groups of vectors PAi – PAM and PJi – PJM (J = B, 

C, and D) are combined together and a least square plane is calculated to fit these two 

combined segments.  The normal vector of the least square plane is N.  The plane 

distance between two segments is d = ( )  NPP JMAM ⋅− .   

 

B.4.1.4. Step height measurement 

The 3D profile of the Step Gage measured by the laser holographic interferometer 

is shown in Fig. B.7.  The four steps A, B, C, and D corresponding to the four surfaces 

shown in Fig. B.5(a), are observed.  The center points, marked as PAM, PBM, PCM, and PDM, 

of the four steps are identified to calculate the height.   

The mean values, marked as µd, of the three measurement groups for Step Heights 

I, II, and III are listed in Table B.1.  The deviation of µd from the target value is the 

accuracy of measurement system.  As listed in Table B.1, the worst case accuracy in three 
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measurement groups for Step Heights I, II, and III are 0.1, 0.7, and 1.0 µm or 3%, 5%, 

and 3% of the target value, respectively.  This demonstrates the µm-level accuracy of the 

laser holographic interferometer for the 3D profile measurement of the machined 

components.   

 

B.4.2. Gage R&R evaluation 

B.4.2.1. Measurement parts 

Five automotive automatic transmission valve bodies from the production line are 

used to evaluate the gage R&R of the laser holographic interferometer.  These five parts, 

from the same production line but with different clamps, have the same surface geometry.  

One of the five parts is shown in Fig. B.8.  The size of the part is about 225 mm x 370 

mm, which is larger than the FOV of the laser holographic interferometer under research.  

Because the flatness of the region enclosed by a dashed rectangle is critical to avoid the 

fluid leakage and this is the region under warranty by the manufacturing plant, only this 

region is measured for the gage R&R evaluation.  The overall surface flatness tolerance 

of this region is 50 µm.   

 

B.4.2.2. Measurement procedures 

The parts are positioned on a 3-2-1 fixture, i.e., three blocks support the parts 

from the bottom, a pin through a hole of the part restricts the lateral x and y movement, 

and a stop bar in contact with the side surface of the part restricts the rotation about the 

pin.   

The five parts are measured three times by two operators.  Each operator 

measures the whole five parts for once before the operator switches.   

 

B.4.2.3. Flatness measurement 

An example of the 3D profile of the valve body measured by the laser holographic 

interferometer is shown in Fig. B.9.  From the 3D profile measurement, the flatness can 

be calculated.  Table B.2 shows the flatness measurements of the five parts by two 
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operators.  Following the standard evaluation procedures [87,88], the gage R&R is 

calculated as 11 µm.  Take 50 µm as the tolerance and the gage R&R is about 23%, 

which is in the acceptable condition.  Due to the restriction of the current fixture, the part 

cannot be located with the pixel accuracy laterally and some edges might introduce some 

errors.  The performance is expected better with a better fixture design.   

 

B.5.  Concluding remarks  

In this appendix, the overview of the laser holographic interferometry and detailed 

study of the state-of-the-art laser holographic interferometer were presented.  Features of 

the laser holographic interferometer were discussed.  The principles of laser holographic 

interferometry were described.  Detailed optical hardware setup and claimed 

specifications of a typical laser holographic interferometer, Coherix Shapix 1000, were 

presented.  The performance of the system was evaluated.   

The Coherix laser holographic interferometer is capable for the µm-level 

precision measurement on machined metal components.  Limitations and potential 

research of this system are identified.   

 

• Limited field of view: This system can measure parts within the 300 mm x 300 mm 

FOV.  Only a portion of the surface area can be measured if the part, such as the 

engine head in Fig. 1.1, is larger than the FOV.   

• Limited depth-of-field: This system can measure parts within the depth-of-field from 

0.3 mm up to 17 mm depending on the optical configurations.  The tradeoff of 

increasing the depth-of-field is the decrease of height measurement accuracy and 

resolution.   

• No capability for round surface measurement: This system is targeted for flat surface 

measurement.  If the surface is round such as a cylinder, very few amount of light can 

be reflected back from the round surface to generate the hologram, which is used for 

the calculation of 3D surface profile, due to the large surface curvature.   
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This research is aimed to solve the above problems for laser holographic 

interferometry, which are described in Chapter 2, Chapter 3, and Chapter 4, respectively.   
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Table B.1.  Plane distance measurements of the step gage by the laser holographic interferometer.   

   Step height   Measurement 

method  I  II  III 

Profilometer Target value 
(µm) 3.9  13.6  32.1 

Group 1 2 3  1 2 3  1 2 3 

Mean, µd 
(µm) 4.0 3.9 3.9  13.1 12.9 13.0  32.7 31.8 31.1 

Difference 
(µm) 0.1 0.03 0.04  0.5 0.7 0.6  0.6 0.3 1.0 

Accuracy 
(µm) 0.1  0.7  1.0 

Laser 
holographic 

interferometer 

Percentage 
of target 

value 
3%  5%  3% 

µd: mean of step height 

σd: standard deviation of step height
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Table B.2.  Gage R&R evaluation of the laser holographic interferometer. 

Repeatability = 11.3 µm 

Reproducibility = 2.2 µm 

Gage R&R = 11.5 µm 

% Gage R&R = 23% for a 50 µm tolerance specification 

Operator A ==> Operator #1  B ==> Operator #2 

Sample # 1st Trial 2nd Trial 3rd Trial  1st Trial 2nd Trial 3rd Trial 

1 55.4 59.5 61.5  60.6 59.6 57.7 

2 62.7 56.2 64.2  63.3 63.2 62.0 

3 70.4 64.2 69.8  69.1 71.5 73.0 

4 51.0 53.9 49.4  51.0 50.0 50.8 

5 52.5 52.3 51.6  52.8 50.5 51.2 

Unit: µm
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Fig. B.1.  Plane light wave distribution in space at a time spot. [76]   
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(b) 

Fig. B.2.  Diagram of the laser holographic interferometer: (a) configuration of the 
machine and (b) scheme of the optical measurement unit in (a).   
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Fig. B.3.  Optical configurations of the laser holographic interferometer under research. 

 

 

 
 

Fig. B.4.  Valve body surface flatness measurement by the laser holographic interferometer.  
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Fig. B.5.  Step gage for performance evaluation: (a) overview and (b) CAD model. 
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Fig. B.6.  Target value measurement of the step heights by Taylor Hobson contact 

profilometer.   
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Fig. B.7.  3D profile of the step gage measured by the laser holographic interferometer.   
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Fig. B.8.  An automotive automatic transmission valve body for performance evaluation. 
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Fig. B.9.  3D profile of the automotive automatic transmission valve body measured by 

the laser holographic interferometry.   
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Appendix C 

Flatness Evaluation for High Definition Measurements 

 

 

C.1.  Introduction 

The goal of the geometric form evaluation is to determine the variation of actual 

part features with reference to the ideal features.  In practice, all the geometric form 

evaluations are based on the measurement data, which contains both the variation of part 

features and the measurement errors.  Figure C.1 illustrates the geometric form evaluation 

process based on the measurement data.  The variation of part features is captured by the 

measurement system, which introduces the data acquisition error and possibly the 

registration error for combining multiple measurements if the part is larger than the field 

of view.  The measured cloud of points contains both the variation of part features and 

the measurement errors.  The geometric form evaluation method is to effectively estimate 

the variation of part features from the measurement data with errors.   

The high definition measurement system usually generates a huge number (larger 

than a million) of data points, which impose a great challenge on how to evaluate the 

geometric form variations because the huge number of data points makes the small 

probability event of large measurement error happen frequently.  Assume the 

measurement error of each point acquired by the high definition measurement system 

follows the normal distribution N(µe, σe) and the error of each point is independent on the 

others.  The 99.73% of measured points will statistically have the measurement error in 

the range from µe – 3σe to µe + 3σe.  If the number of measured points is a hundred, the 

possibility that at least one point has the measurement error out of this range is 0.27.  As 
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the number of measured points increases to a million level, the possibility to have points 

with large measurement errors increases significantly.   

An example is elaborated to explain the problem of the current geometric form 

evaluation method for high definition measurement system.  Let the flatness tolerance of 

the part be 100 µm.  A capable measurement system must have the precision/tolerance 

ratio less than 20% [87].  This means that the repeatability of the measurement system 

5.15σe must be smaller than 20 µm (= 100 µm x 20%), i.e., the standard deviation σe 

should be equal to or smaller than 3.9 µm.  For a high definition measurement system 

with the deviation σe equal to 3.9 µm, if there are 1x107 points measured in one 

acquisition, it will statistically have at least one data point with the measurement error 

larger than 21.8 µm.  The current ANSI and ISO standards [89,90] define the flatness as 

the minimum zone which encloses all the measured data points of the part surface.  

Following this definition, the evaluated flatness can have an error up to 21.8 µm 

statistically due to the large number of data points by the high definition measurement 

system.  This error is unacceptable in most industrial applications though the 

measurement system is capable by definition.   

In this appendix, the preliminary research is conducted to quantitatively analyze 

the flatness evaluation errors of different methods for the high definition measurement 

system.   

 

C.2.  Mathematical analysis 

The surface flatness is generally evaluated in two steps.  First, a reference plane, 

to which the deviations of all the points are referred, is determined.  Second, a flatness 

definition, such as the range of deviations of all the measured points from the identified 

reference plane, is applied to calculate the flatness.   

 

C.2.1.  Reference plane estimation 

Two methods, least square and minimum zone, are mainly used to estimate the 

reference plane for flatness evaluation.  The least square method identifies the reference 
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plane by least square fitting all the measured points.  The minimum zone method defines 

the reference plane as the plane from which the range of deviations of all the measured 

points is the minimum.   

The error in the estimation of the reference plane is different for the least square 

and minimum zone methods.   

 

C.2.1.1.  Least square estimation of the reference plane 

The least square method assumes that the surface can be fitted with a plane 

equation: 

 

cybxaz ++=  (C.1) 

 

where  

 

z is the height of a surface point,  

x and y are the lateral position of a surface point, and 

a, b, and c are the coefficients of the plane equation.  The a determines the 

shift in the height direction and b and c determine the orientation of the 

reference plane.   

 

In practice, the part is not ideal and each point on the part surface has a deviation 

δi from the ideal plane and the Eq. (C.1) is modified as 

 

iiii cybxaz δ+++=  (C.2) 

 

where  
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zi is the height of the point i on the part surface,  

xi and yi are the lateral coordinates of the point i, and 

δi is the deviation of the point i from the plane z = a +bx + cy.   

 

Assume the measurement error εi of the point i is independent of other points and 

follows the normal distribution with the mean µe and variance 2
eσ .  Then to include the 

measurement error, Eq. (C.2) is modified as 

 

iiiii cybxaz δε +++=+  (C.3) 

 

The least square method minimizes the sum of squared deviation from the 

reference plane 

 

( )[ ]∑ =++−+i iiii cybxaz min2ε  (C.4) 

 

To satisfy the Eq. (C.4), the parameters a, b, and c can be estimated by 
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The mathematical expression of the parameters a, b, and c determined by the Eq. 

(C.5) is complicated.  In order to simplify the expression without losing the generality, 
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the coordinate system is shifted to the center of the plane to satisfy the following 

conditions 

 

0=∑ ix  (C.6) 

0=∑ iy  (C.7) 

0=∑ ii yx  (C.8) 

 

Then the parameters a, b, and c are determined by 

 

∑∑∑
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑∑∑+∑∑∑
∑∑∑+∑∑∑

∑∑∑+∑∑∑
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
22

22

22

2222

1
11
11 ii

iiiiii

iiiiii

iiiiii

yx
yxzyx
xyzxy

yxzyx

c
b
a

ε
ε
ε

 (C.9) 

 

From Eq. (C.9), the means or expected value and variance of the estimated 

parameters a, b, and c due to the measurement error can be determined by 
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and 
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where, E(.) and V(.) indicate the expected value and variance function, respectively.   

It is observed from Eq. (C.10) that the expected values of the parameters b and c 

are not affected by the measurement error.  This indicates that the orientation of the 

reference plane estimated by the least square method is expected to be the same with the 

measurement error.  The µe change of the expected value of a does not affect the flatness 

evaluation because a only determines the shift of the reference plane in the height 

direction.   

It is observed from Eq. (C.11) that as the number of measured points increases, 

the variance of the parameters b and c decreases.  This indicates that the orientation of the 

reference plane estimated by the least square method is insensitive to the measurement 

error of the high definition measurement system which generates a huge number of data 

points.   

 

C.2.1.2.  Minimum zone estimation of the reference plane 

Several approaches, such as Monte Carlo [91], simplex [91], and convex hull [92], 

have been developed to find the reference plane for minimum zone estimation.   

The Monte Carlo approach randomly selects the values of the parameters a, b, and 

c to calculate the distance of the enclosing parallel plane pair.  If the distance is smaller 

than the current, the parameters a, b, and c will be set to these values and the process is 

repeated until the change is below the threshold.  Because of the random selection of 

parameters, the possibility of missing the true minimum is not ruled out [91] for this 

approach.   

The simplex approach utilizes the gradient search to find the optimal combination 

of the parameters a, b, and c, which construct the enclosing parallel plane pair with 

minimum distance, for the reference plane.   

The convex hull approach has two steps.  First all the supporting planes, which 

have all the measured points on one side, are identified.  Second, based on that the 

reference plane must be one of the supporting planes, this approach designates the 
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supporting plane, which constructs the enclosing parallel plane pair with minimum 

distance, as the reference plane.   

Only the convex hull approach is considered in the following error analysis 

because the simplex approach should reach the reference plane very close to that of the 

convex hull approach.  The reference plane defined by the convex hull approach is 

determined only by three measured points no matter which supporting plane is selected.  

Based on Eq. (C.11), the variation of the reference plane coefficients are inversely 

proportional to the sum of the squared coordinates of only these three points.  Compared 

with the least square method, the reference plane determined by minimum zone method 

using the convex hull approach is more sensitive to the measurement error.   

 

C.2.2.  Flatness definition 

The flatness is usually defined as the range of deviations, so called peak-to-valley, 

from the identified reference plane.  However, this definition does not consider the effect 

of the possibly large measurement errors from the high definition measurement system.   

Two other flatness definitions, the 6σf and the modified peak-to-valley, are 

proposed and analyzed.   

 

C.2.2.1.  6σf flatness definition 

This 6σ flatness calculates the standard deviation σf of the deviations of all the 

measured points from the identified reference plane and uses 6σf as the flatness.   

This definition cuts off all the measured points outside of 6σf range and can 

effectively suppress the measurement error.  However, this definition can also cut off or 

overestimate some true part variations.  For example, the surface of the part has the 

simulated profile as shown in Fig. C.2(a).  Assume the profile in Fig. C.2(a) is the true 

surface profile and does not have any measurement error.  Most of the data points are 

concentrated in a very small height range and only a small center region of the profile is 

protruded in the height.  The histogram of the height distribution is illustrated by Fig. 

C.2(b).  The 6σf flatness is 23 µm, 71 µm smaller than the 94 µm peak-to-valley flatness 
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with the reference plane defined by the least square method because the protruded profile 

is cut off by the 6σf flatness definition.   

 

C.2.2.2.  Modified peak-to-valley flatness definition 

A criterion is proposed to modify the peak and valley points if large measurement 

errors on these two points are identified.  All the measured points are sorted in the 

sequence of deviation.  The peak point with maximum deviation and the valley point with 

minimum deviation from the reference plane are identified.  The local 5 x 5 region 

centered at the peak point is least square fitted by a plane.  The trend of the fitted plane is 

subtracted from the local region.  If there is another point which has the height value 

within the σf range from the height value of the peak point in the local region, this peak 

point will be used for flatness evaluation.  Otherwise, this peak point is discarded as the 

point with large measurement error and the point next to the peak point in the sequence 

will be checked.  This process is repeated until the peak point is found.  The same process 

is conducted on the valley point.  The flatness is defined as the range of deviations of the 

peak and valley points determined by the proposed criterion from the identified reference 

plane.   

 

C.3.  Simulations 

Five surface profiles are simulated to investigate the flatness evaluation errors on 

different part variations.  A random noise with normal distribution is added to the surface 

profile.  The reference plane and the flatness are estimated from the generated surface 

profile plus the random measurement error.   

The five surface profiles are generated in a matrix with the dimension 1024 x 

1024 to simulate the measurement result by the high definition measurement system.  The 

ranges of the lateral coordinates x and y are both from 1 to 1024 for the five surface 

profiles.   
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Profile 1: an ideal horizontal plane, as shown in Fig. C.3(a).  The surface 

expression is z = 0 mm.  The height distribution histogram of this surface profile is 

illustrated in Fig. C.3(b).  All the data points are concentrated at the height position 0 mm.   

Profile 2: an ideal tilted plane, as shown in Fig. C.4(a).  The surface expression is 

z = 5×10–5x + 2×10–5y mm.  The height distribution histogram of this surface profile 

approximates the normal distribution, as illustrated in Fig. C.4(b).  The minimum and 

maximum heights are 7×10–5 mm and 0.072 mm, respectively.   

Profile 3: an ideal bowl-shaped plane, as shown in Fig. C.5(a).  The surface 

expression is z = 1.92×10–5[(x – 512)2 + (y – 512)2] mm.  The height distribution 

histogram of this surface profile is illustrated in Fig. C.5(b).  The distribution of data 

points with height smaller than 0.05 mm levels around 16%.  As the height of points 

increases above 0.05 mm, the percentage of points decreases.  The minimum and 

maximum heights are 0 mm and 0.100 mm, respectively.   

Profile 4: a plane with a protrusion in the center and some ripples around the 

protrusion, as shown in Fig. C.2(a).  The surface expression is 
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this surface profile is illustrated in Fig. C.2(b).  More than 90% of the points are 

concentrated in the height range close to 0 mm.  The minimum and maximum heights are 

–0.017 mm and 0.077 mm, respectively.   

Profile 5: a surface composed of multiple sine functions, as shown in Fig. C.6(a).  

The surface expression is z = 0.01[sin(6.13×10–3x) + sin(1.53×10–2x) + sin(9.20×10–3y) + 

sin(2.15×10–2y) + sin(3.99×10–2y)] mm.  The height distribution histogram of this surface 

profile approximates the normal distribution as illustrated in Fig. C.4(b).  The minimum 

and maximum heights are –0.049 mm and 0.038 mm, respectively.   

A random noise matrix, following the normal distribution with the mean and 

standard deviation equal to 0 µm and 3.9 µm, respectively, is added to each of the five 

generated surface profile.  Using the methods described in Sec. C.2, the reference plane 

and the flatness are estimated from the generated surface profiles with the random noises.  
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To investigate the statistics of the flatness evaluation error, the evaluation is repeated 

1000 times with 1000 different random noise samples.   

Table C.1 lists the standard deviations σa, σb, and σc of the coefficients a, b, and c, 

respectively, of the estimated reference planes from the 1000 evaluations for the five 

surface profiles using the least square and convex hull minimum zone methods.  Only the 

coefficients b and c are considered because they determine the orientation of reference 

plane which affects the flatness evaluation result.   

The standard deviations σb and σc estimated by the least square method is very 

stable on the five surface profiles, as shown in Table C.1.  This indicates that the 

variation of the orientation of the reference plane estimated by the least square method is 

independent on the surface profile.  The standard deviations σb and σc estimated by the 

convex hull minimum zone method changes on different surface profiles.  The maximum 

σb is 1.3×10–5 mm for the profile 4 of a plane with protrusion and the minimum σb is 

1.6×10–6 mm for the profile 1 of a perfect horizontal plane.  This indicates that the 

variation of the orientation of the reference plane estimated by the convex hull minimum 

zone method is dependent on the surface profile.  

The standard deviations σb and σc estimated by the convex hull minimum zone 

method are always larger (from 100 to 1000 times) than those estimated by the least 

square method for all the five surface profiles, as shown in Table C.1.  For example, the 

σb and σc estimated by the convex hull minimum zone method are 1.3×10–5 mm for the 

profile 4 of a plane with protrusion and those estimated by the least square methods are 

1.1×10–8 mm.  With the 1024 x 1024 dimension of the measurement matrix, the 

maximum 3σ tilt error of the reference plane from one corner of the plane to the other is 

about 69 µm for the convex hull minimum zone method and is about 0.07 µm for the 

least square method.  This verifies the argument in Sec. C.2 that the reference plane 

estimated by the least square method is more robust to measurement errors compared 

with minimum zone method.   

Table C.2 shows the mean and standard deviation of the estimated flatness from 

the 1000 evaluations for the five surface profiles.  For each surface profile, the reference 
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planes estimated by the least square and minimum zone methods are used.  With the 

identified reference plane, the three flatness definitions, discussed in Sec. C.2.2.2, are 

applied for evaluation.   

The least square and minimum zone methods are compared in the mean and 

standard deviations of the evaluated flatness for different surface profiles using the three 

flatness definitions.  The mean of evaluated flatness by the minimum zone is always 

about 1 µm smaller than that of the least square method for the peak-to-valley definition 

on different surface profiles.  For the modified peak-to-valley flatness definition, the 

relation of the evaluated flatness between minimum zone and least square methods is not 

definite for different surface profiles.  However, the difference of the evaluated flatness 

between the two methods for both the peak-to-valley and modified peak-to-valley 

flatness definitions is still not significant (about 1 µm).  The standard deviations of 

evaluated flatness by the least square and minimum zone methods are of the same level 

(about 1.5 µm) for different surface profiles.   

The three flatness definitions are compared in the mean and standard deviations of 

the evaluated flatness for different surface profiles using the least square and minimum 

zone methods.   

The 6σf definition effectively cuts off the measurement error effect than the other 

two definitions for the profiles 1 and 2, which do not have the part variation.  However, 

the 6σf definition overestimates the flatness for the profile 3 of a bowl-shaped surface and 

underestimates the flatness for the profile 4 of a plane with protrusion because this 

definition does not consider the part variation separately from the measurement error as 

described in Sec. C.2.  This indicates the 6σf flatness definition should not be used 

generally.  The modified peak-to-valley definition effectively suppresses the 

measurement error for the profiles 1 and 2.  However, this definition does not indicate 

much advantage over the peak-to-valley definition to suppress the measurement error for 

the other three surface profiles.  This is because the points with large measurement errors, 

which are discarded by the modified peak-to-valley definition, can be randomly 

distributed in some regions of the surface profile which does not have contribution to the 
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flatness evaluation due to that these regions are not on the top or bottom of the whole 

surface profile.   

The standard deviations of evaluated flatness by the peak-to-valley and modified 

peak-to-valley definitions are at the same level and are stable for different surface 

profiles.  The standard deviation of the 6σf definition changes significantly for different 

surface profiles.   

In summary, several observations are made based on the analysis of simulation 

results of the reference plane and flatness evaluation shown in Tables C.1 and C.2.  First, 

the orientation of the reference plane estimated by the least square method is more robust 

than the minimum zone method.  Second, the difference of the evaluated flatness between 

the least square and minimum zone methods is not significant with the measurement 

errors of high definition measurement system.  Third, the 6σf definition should not be 

applied generally because it is dependent on the part variation and the possibility of 

underestimation and overestimation is not ruled out.  Last, the modified peak-to-valley 

definition can effectively suppress the large measurement errors which impact the 

flatness evaluation though this effect of the definition is not necessarily detected in some 

cases.   

 

C.4.  Concluding remarks 

The flatness evaluation for the high definition measurements was discussed.  The 

mathematical analysis of the reference plane estimation error by the least square and 

minimum zone methods was conducted.  The widely used peak-to-valley flatness 

definition and two proposed flatness definitions, 6σf and modified peak-to-valley, were 

analyzed.  Five surface profiles with the random measurement errors were generated to 

simulate the flatness evaluation process for the high definition measurement system.  The 

least square method with the modified peak-to-valley definition was demonstrated to 

have the good potential among the analyzed methods to effectively evaluate the flatness 

with good noise robustness for the high definition measurement system.   
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This is an exploratory study of the geometrical form evaluation for the high 

definition measurements.  Many research investigations can follow.  For example, a 

theoretical error analysis of other flatness evaluation methods such as the minimum 

average [93] and function-oriented evaluation [94] can be developed.  A more 

comprehensive mathematical method shall be developed to quantitatively analyze error 

flows starting from each measured points to the final evaluated flatness result for the high 

definition measurement system.  The research in this appendix can also be extended to 

other more complicated geometric forms, such as cylinder and sphere.   
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Table C.1.  Standard deviation of reference plane coefficients for flatness evaluation.   

Least square Convex hull minimum zone 
Part variation 

σa (mm) σb (mm) σc (mm) σa (mm) σb (mm) σc (mm) 

Profile 1 8.9×10–6 1.1×10–8 1.1×10–8 1.6×10–2 1.6×10–6 1.6×10–6 

Profile 2 9.1×10–6 1.1×10–8 1.1×10–8 1.6×10–2 1.7×10–6 1.6×10–6 

Profile 3 8.9×10–6 1.1×10–8 1.1×10–8 1.5×10–3 1.9×10–6 1.8×10–6 

Profile 4 8.9×10–6 1.1×10–8 1.1×10–8 9.1×10–3 1.3×10–5 1.3×10–5 

Profile 5 9.1×10–6 1.1×10–8 1.1×10–8 2.7×10–3 3.3×10–6 1.9×10–6 
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Table C.2.  Flatness evaluation error analysis of different methods.   

Mean of evaluated flatness (µm) Standard deviation of evaluated flatness (µm)
Part variation Method to determine 

the reference plane Peak-to-valley 6σf 
Modified peak-to-

valley Peak-to-valley 6σf 
Modified peak-to-

valley 

Least square 33.1 20.4 27.4 1.2 0.01 1.1 
Profile 1 

Minimum zone 32.5 20.9 28.2 1.0 0.4 1.2 

Least square 33.2 20.4 27.3 1.2 0.01 1.0 
Profile 2 

Minimum zone 32.6 20.8 28.2 1.0 0.4 1.3 

Least square 122.7 129.2 122.7 1.6 0.02 1.6 
Profile 3 

Minimum zone 121.8 129.2 121.8 1.3 0.09 1.3 

Least square 112.4 30.6 111.2 1.7 0.02 1.5 
Profile 4 

Minimum zone 111.6 43.3 111.4 1.6 7.5 1.5 

Least square 105.4 88.8 105.4 1.7 0.02 1.7 
Profile 5 

Minimum zone 104.0 89.4 104.0 1.5 0.6 1.5 
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Fig. C.1.  Geometric form evaluation based on the measurement data with the part and 
measurement variations.   
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 (a) (b) 

Fig. C.2.  Simulated part variation of profile 4 without measurement errors: (a) 3D profile 
and (b) histogram of height distribution.   
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 (a) (b) 

Fig. C.3.  Simulated part variation of profile 1 without measurement errors: (a) 3D profile 
and (b) histogram of height distribution.   
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 (a) (b) 

Fig. C.4.  Simulated part variation of profile 2 without measurement errors: (a) 3D profile 
and (b) histogram of height distribution.   
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 (a) (b) 

Fig. C.5.  Simulated part variation of profile 3 without measurement errors: (a) 3D profile 
and (b) histogram of height distribution.   
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Fig. C.6.  Simulated part variation of profile 5 without measurement errors: (a) 3D profile 
and (b) histogram of height distribution.   



 139

 

 

 

 

 

 

 

 

 

 

 

References 



 140

1. White, D. A. and Shry, J., 2000, “Noncontact Measurement for Today and 
Tomorrow,” Quality Digest.   

2. Bradley, C., 1998, “Computer Vision Techniques in Reverse Engineering,” 
Engineering Design and Automation, Vol. 4, pp. 101-12.   

3. Maa, H. G., 2002, “Methods for Measuring Height and Planimetry Discrepancies in 
Airborne Laserscanner Data,” Photogrammetric Engineering and Remote Sensing, 
Vol.68, pp. 933-40.   

4. Rooks, B. W., 1997, “Vision Helping the Automotive Industry to Better Customer 
Choice,” Industrial Robot, Vol. 24, pp. 48-51.   

5. Buckberry, C. H., Towers, D. P., Stockley, B, C., Tavender, B., Jones, M. P., Jones, J. 
D. C., and Valera, J. D. R., 1996, “Whole-Field Optical Diagnostics for Structural 
Analysis in the Automotive Industry,” Optics and Lasers in Engineering, Vol. 25, No. 
6, pp. 433-453.   

6. Beeck, M. A. and Hentschel, W., 2000, “Laser Metrology — A Diagnostic Tool in 
Automotive Development Processes,” Optics and Lasers in Engineering, Vol. 34, No. 
2, pp. 101-120.   

7. Leopold, J., and Günther, H., 2002, “Fast 3D Measurement of Gear Wheels,” 
Proceedings of the SPIE - The International Society for Optical Engineering, Vol. 
4900, pp. 185-194.   

8. Chen, F., Marchi, M. M., and Allen, T. E., 2002, “Powertrain Engineering Using 
Holographic/Electronic Speckle Pattern Interferometry,” Proceedings of the SPIE - 
The International Society for Optical Engineering, Vol. 4778, pp. 302-311.   

9. Zollne, F., Matusevich, V., and Kowarschik, R., 2003, “3D Measurement by 
Stereophotogrammetry,” Proceedings of the SPIE on Optical Measurement Systems 
for Industrial Inspection III, Vol. 5144, pp. 311-314.   

10. Trolinger, J. D., 1996, “Ultrahigh Resolution Interferometry,” Proceedings of the 
SPIE - The International Society for Optical Engineering, Vol. 2861, pp. 114-123.   

11. Kozhevatov, I.E.; Kulikova, E.Kh, 2001, “Interferometric Methods for Surface 
Testing High-Order White-Light Interferometer,” Instruments and Experimental 
Techniques, Vol. 44, No. 1, pp. 84-87.   

12. Zou, D., Ye, S., and Wang, C., 1995, “Structured-Lighting Surface Sensor and Its 
Calibration,” Optical Engineering, Vol. 34, No. 10, pp. 3040-3043.   

13. Wan, G., Nosekabel, E. H., 1999, “Surface Inspection on Bodies in White in 
Automotive Industry,” Proceedings of SPIE, Vol. 3824, pp. 329-333.   

14. Fraser, C. S., 1992, “Photogrammetric Measurement to One Part in a Million,” 
Photogrammetric Engineering and Remote Sensing, Vol. 58, No. 3, pp. 305-310.   

15. Kafri, O. and Glatt I., 1989, The Physics of Moire Metrology, John Wiley & Sons.   

16. Wykes, C. and Morshedizadeh, R., 1995, “Surface Topography Measurement Using 
Digital Moiré Contouring – Errors and Limitations,” Proceedings of the Institution of 



 141

Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 209, No. 
B4, pp. 317-325.   

17. Xie, X., Atkinson, J. T., Lalor, M. J., and Burton, D., 1997, “Effects on Absolute 
Moiré Contouring by Using Gratings with Different Period and Profile and Rotating 
Angles,” Optics and Lasers in Engineering, Vol. 27, No. 3, pp. 247-257.   

18. Hamilton, D. K. and Wilson, T., 1982, “Three-Dimensional Surface Measurement 
Using the Confocal Scanning Microscope,” Applied Physics B, Vol. 27, No. 4, pp. 
211-213.   

19. Mignot, J., and Gorecki, C., 1983, “Measurement of Surface Roughness: Comparison 
between a Defect-of-Focus Optical Technique and the Classic Stylus Technique,” 
Wear, Vol. 87, No. 1, pp. 39-49.   

20. Kilpelä, A., Pennala, R., and Kostamovaara, J., 2001, “Precise Pulsed Time-of-Flight 
Laser Range Finder for Industrial Distance Measurements,” Review of Scientific 
Instruments, Vol. 72, No. 4, pp. 2197-2202.   

21. Wang, L. S., Jambunathan, K., Dobbins, B. N., and He, S. P., 1996, “Measurement of 
Three-Dimensional Surface Shape and Deformations Using Phase Stepping Speckle 
Interferometry,” Optical Engineering, Vol. 35, No. 8, pp. 2333-2340.   

22. Chen, F., Brown, G. M., and Song, M., 2000, “Overview of Three-Dimensional 
Shape Measurement Using Optical Methods,” Optical Engineering, Vol. 39, No. 1, pp. 
10-22.   

23. VanderLugt, A. B., “Signal Detection by Complex Spatial Filtering,” IEEE 
Transaction on Information Theory, 1964, Vol. 10, No. 2, pp. 139-145.   

24. Kim, T. and Poon, T. C., “Three-Dimensional Matching by Use of Phase-Only 
Holographic Information and the Wigner Distribution,” Journal of the Optical Society 
of America A (Optics, Image Science and Vision), 2000, Vol. 17. No. 2, pp. 2520-
2528.   

25. Kim, T., Poon, T. C., Wu, M. H., Shinoda, K., and Suzuki, Y., “Three-Dimensional 
Image Matching Using Two-Dimensional Optical Heterodyne Scanning,” Optical 
Memory and Neural Networks, 1999, Vol. 8, No. 3, pp. 139-145.   

26. Dias, P., Sequeira, V., Goncalves, J.G.M., and Vaz, F., “Automatic Registration of 
Laser Reflectance and Colour Intensity Images for 3D Reconstruction,” Robotics and 
Autonomous Systems, 2002, Vol. 39, pp. 157-168.   

27. Hsu, L. Y. and Loew, M. H., “Evaluation of the Accuracy of an Edge-Based 
Approach for Multimodality Brain Image Registration,” Proceedings of the SPIE - 
The International Society for Optical Engineering, 2000, Vol. 3979, pp. 360-371.   

28. Hsu, L. Y. and Loew, M. H., “Fully Automatic 3D Feature-Based Registration of 
Multi-Modality Medical Images,” Image and Vision Computing, 2001, Vol. 19, No. 
1-2, pp. 75-85.   

29. Shalom, T., “System and Method for Aligning a Locally-Reconstructed Three-
Dimensional Object to a Global Coordinate System Using Partially-Detected Control 
Points,” 2003, United States Patent #: 6556705.   



 142

30. Shalom, T., Zelnik, I. and Goldberger J., “System and Method for ‘Stitching’ a 
Plurality of Reconstructions of Three-Dimensional Surface Features of Object(S) in a 
Scene Defined Relative to Respective Coordinate Systems to Relate Them to a 
Common Coordinate System,” 2001, United States Patent #: 6201541. 

31. Haralick, R. M. and Shapiro, L. G., Computer and Robot Vision, Volume II, 1992, 
Addison-Wesley.   

32. Reddy, B. S. and Chatterji, B. N., “An FFT-Based Technique for Translation, 
Rotation, and Scale-Invariant Image Registration,” IEEE Transactions on Image 
Processing, 1996, Vol. 5, No. 8, pp. 1266-1271.   

33. Jähne, B., Practical Handbook on Image Processing for Scientific and Technical 
Applications, 2004, CRC Press.   

34. Whitehouse, D. J., Handbook of Surface Metrology, 1994, Institute of Physics 
Publishing.   

35. Strand, J., Taxt, T., and Jain, A. K., “Two-dimensional phase unwrapping using a 
block least-squares method,” IEEE Transactions on Image Processing, 1999, Vol. 8, 
No. 3, pp. 375-386.   

36. Huntley, J. M. and Saldner, H. “Temporal phase-unwrapping algorithm for automated 
interferogram analysis,” Applied Optics, 1993, Vol. 32, No. 17, pp. 3047-3052.   

37. Huntley, J. M. and Saldner, H. O., “Shape measurement by temporal phase 
unwrapping: comparison of unwrapping algorithms,” Measurement Science and 
Technology, 1997, Vol. 8, No. 9, pp. 986-992.   

38. Saldner, H. O. and Huntley, J. M., “Temporal phase unwrapping: application to 
surface profiling of discontinuous objects,” Applied Optics, 1997, Vol. 36, No. 13, pp. 
2770-2775.   

39. Gasvik, K. J., Optical Metrology, John Wiley & Sons, 2002, Hoboken, NJ.   

40. Friedlander, B. and Francos, J. M., “Model based phase unwrapping of 2-D signals,” 
IEEE Transactions on Signal Processing, 1996, Vol. 44, 2999–3007.   

41. Liang, Z. P., “A model-based method for phase unwrapping,” IEEE Transactions on 
Medical Imaging, 1996, Vol. 15, No. 6, pp. 893–897.   

42. Leitao, J. and Figueiredo, M. A., “Interferometric image reconstruction as a nonlinear 
bayesian estimation problem,” in Proceedings International Conference on Image 
Processing, 1995, pp. 453–456.   

43. Ghiglia, D. C. and Romero, L. A., “Robust two-dimensional weighted and 
unweighted phase unwrapping that uses fast transforms and iterative methods,” 
Journal of the Optical Society of America A (Optics and Image Science), 1994, Vol. 
11, No. 1, pp. 107-117.   

44. Huntley, J. M. and Coggrave, C. R., “Progress in phase unwrapping,” Proceedings of 
the SPIE - The International Society for Optical Engineering, 1998, Vol. 3407, pp. 
86-93.   



 143

45. Huntley, J. M., “Noise-immune phase unwrapping algorithm,” Applied Optics, 1989, 
Vol. 28, No. 15, pp. 3268-3270.   

46. Cusack, R., Huntley, J. M., and Goldrein, H. T., “Improved noise-immune phase-
unwrapping algorithm,” Applied Optics, 1995, Vol. 34, No. 5, pp. 781-789.   

47. Buckland, J. R., Huntley, J. M., and Turner, S. R. E., “Unwrapping noisy phase maps 
by use of a minimum-cost-matching algorithm,” Applied Optics, 1995, Vol. 34, No. 
23, pp. 5100-5108.   

48. Quiroga, J. A., Gonzalez-Cano, A., and Bernabeu, E., “Stable-marriages algorithm for 
preprocessing phase maps with discontinuity sources,” Applied Optics, 1995, Vol. 34, 
No. 23, pp. 5029-5038.   

49. Gutmann, B. and Weber, H., “Phase unwrapping with the branch-cut method: role of 
phase-field direction,” Applied Optics, 2000, Vol. 39, No. 26, pp. 4802-4816.   

50. Chang, H. Y., Chen, C. W., Lee, C. K., and Hu, C. P., “The tapestry cellular automata 
phase unwrapping algorithm for interferogram analysis,” Optics and Lasers in 
Engineering, 1998, Vol. 30, pp. 487-502.   

51. Strand, J. and Taxt, T., “Two-dimensional phase unwrapping using robust derivative 
estimation and adaptive integration,” IEEE Transactions on Image Processing, 2002, 
Vol. 10, No. 10, pp. 1192-1200.   

52. Huang, M. J. and He, Z. N., “Phase unwrapping through region-referenced algorithm 
and window-patching method,” Optics Communications, 2002, Vol. 203, pp. 225-241.   

53. Huang, Z., Shih, A. J., and Ni, J., “Laser interferometry hologram registration for 
three-dimensional precision measurements,” Journal of Manufacturing Science and 
Engineering Transactions of the ASME (in press).   

54. Stephenson, P., Burton, D. R., and Lalor, M. J., “Data validation techniques in a tiled 
phase unwrapping algorithm,” Optical Engineering, 1994, Vol. 33, No. 11, pp. 3703-
3708.   

55. Gonzalez, R. C. and Woods, R. E., Digital Image Processing, 2002, Prentice Hall, 
Upper Saddle River, NJ.   

56. Wu, C. F. J. and Hamada, M., Experiments: Planning, Analysis, and Parameter 
Design Optimization, 2000, John Wiley and Sons, New York.   

57. Neter, J. and Wasserman, W., Applied Linear Statistical Models, 1974, Richard D. 
Irwin, Inc.   

58. Huang, M. J. and Sheu, W. H., “Histogram-data-orientated filter for inconsistency 
removal of interferometric phase maps,” Optical Engineering, 2005, Vol. 44, No. 4, 
45602-1-11.   

59. T. Tsukada and Y. Dahai, “A Study on Evaluation of Circularity and Related Features 
for Eccentric Cam Shaft (1st Report) – Development of Algorithm and Its 
Simulation,” International Journal of the Japan Society for Precision Engineering, 
1995, Vol. 29, No. 1, pp. 80-85.   



 144

60. T. Tsukada and Y. Dahai, “A Study on Evaluation of Circularity and Related Features 
for Eccentric Cam Shaft (2nd Report) – Measured Results and Discussion,” 
International Journal of the Japan Society for Precision Engineering, 1995, Vol. 29, 
No. 2, pp. 150-155.   

61. Dean J.W. Dawson, “Cylindricity and Its Measurement,” International Journal of 
Machine Tools and Manufacture, 1992, Vol. 32, No. 1/2, pp. 247-253.   

62. Y. Kakino and J. Kitazawa, “In Situ Measurement of Cylindricity,” Annals of the 
CIRP, 1978, Vol. 27, No. 1, pp. 371-375.   

63. S. Y. Li, M. N. Qin, and C. J. Li, “On-line Cylindricity Measurement and Error 
Compensating Control in Ultra-Precision Lathe,” SPIE Measurement Technology and 
Intelligent Instruments, 1993, Vol. 2101, pp. 991-994.   

64. A. W. Kulawiec, “Interferometric Measurement of Absolute Dimensions of 
Cylindrical Surfaces at Grazing Incidence,” 1998, United States Patent #: 5,777,738.   

65. Z. Huang, A. J. Shih, and J. Ni, “Laser Interferometry Hologram Registration for 
Three-Dimensional Precision Measurements,” ASME Journal of Manufacturing 
Science and Engineering (in press).   

66. H. Goldstein, Classical Mechanics, 1980, 2nd ed. Addison-Wesley, pp. 164-166.   

67. K. Carr and P. Ferreira, “Verification of Form Tolerances Part II: Cylindricity and 
Straightness of A Median Line,” 1995, Precision Engineering, Vol. 17, pp. 144-156.   

68. A. B. Forbes, “Least-Squares Best-Fit Geometric Elements,” NPL Rep DITC 140/89, 
National Physics Laboratory, UK, April 1989.   

69. H. Y. Lai, W. Y. Jywe, C. K. Chen, and C. H. Liu, “Precision modeling of form 
errors for cylindricity evaluation using genetic algorithms,” Precision Engineering, 
2000, Vol. 24, pp. 310-319.   

70. O. Devillers and F. P. Preparata, “Culling a set of points for roundness or cylindricity 
evaluations,” International Journal of Computational Geometry & Applications, 2003, 
Vol. 13, No. 3, pp. 231-240.   

71. http://www.haascnc.com/ROTARY_specs.asp?ID=43&mdl=HA5C#RotaryTreeMod
el 

72. Leith, E. N. and Upatneiks, J., “Reconstructed Wavefronts and Communication 
Theory,” Journal of Optical Society of America, 1962, Vol. 52, pp. 1123-1130.   

73. Leith, E. N. and Upatneiks, J., “Wavefront Reconstruction with Continuous-Tone 
Objects,” Journal of Optical Society of America, 1963, Vol. 53, pp. 1377-1381.   

74. Leith, E. N. and Upatneiks, J., “Wavefront Reconstruction with Diffused Illumination 
and Three-Dimensional Objects,” Journal of Optical Society of America, 1964, Vol. 
54, pp. 1295-1301.   

75. Powell, R. L. and Stetson, K. A., “Interferometric Vibration Analysis by Wavefront 
Reconstruction,” Journal of Optical Society of America, 1965, Vol. 55, pp. 1593-
1608.   

76. Gåsvik, K. J., 2002, Optical Metrology, John Wiley & Sons Ltd.   



 145

77. Kreis, T., Holographic Interferometry: Principles and Methods, 1996, Akademie 
Verlag GmbH, Berlin. 

78. Hariharan, P., Oreb, B. F., and Brown, N., “A Digital Phase-Measurement System for 
Real-Time Holographic Interferometry,” Optics Communications, 1982, Vol. 41, No. 
6, pp. 393-396.   

79. K. C. Harvey and C. J. Myatt, “External-Cavity Diode Laser Using a Grazing 
Incidence Diffraction Grating,” Optics Letters, 1991, Vol. 16, pp. 910–912. 

80. Maack, T., Notni, G., and Schreiber, W., “Three Coordinate Measurement of an 
Object Surface with a Combined Two-Wavelength and Two Source Phase Shifting 
Speckle Interferometer,” Optics Communications, 1995, Vol. 115, No. 5-6, pp. 576–
584.   

81. Suematsu, M. and Takeda, M., “Wavelength-Shift Interferometry for Distance 
Measurements Using the Fourier Transform Technique for Fringe Analysis,” Applied 
Optics, 1991, Vol. 30, No. 28, pp. 4046-4055.   

82. Gonzalez, R. C. and Woods, R. E., Digital Image Processing, 2001, Prentice-Hall.   

83. http://www.newfocus.com/datasheets/ds_TLB-6300.pdf 

84. http://vfm.dalsa.com/docs/manuals/1m30p_user_manual_03-32-10001-03.pdf?refr= 

85. Coherix, 2002, User’s Manual for Coherix Non-contact Precision Measurement 
Holomapper 

86. Coherix, 2004, HoloMapper Calculations: A Description in Matlab 

87. Liggett, J. V., “Dimensional Variation Management Handbook, A Guide for Quality, 
Design, and Manufacturing Engineers,” 1993, Prentice-Hall.   

88. Automotive IndustryAction Group, “Measurement Systems Analysis. Reference 
Manual,” 2002.   

89. ANSI standard Y14.5, Dimensioning and Tolerancing, 1982, New York: The 
American Society of Mechanical Engineers.   

90. ISO standard 1101, Technical Drawings – Geometrical Tolerancing, 1983-12-01.   

91. Murthy, T. S. R. and Abdin, S. Z., “Minimum Zone Evaluation of Surfaces,” 
International Journal of Machine Tool Design and Research, 1980, Vol. 20, pp. 123-
136.   

92. Samuel, G. L. and Shunmugam, M. S., “Evaluation of Straightness and Flatness Error 
Using Computational Geometric Techniques,” Computer-Aided Design, 1999, Vol. 
31, pp. 829-843.   

93. Shunmugam, M. S., “New Approach for Evaluating Form Errors of Engineering 
Surfaces,” Computer-Aided Design, 1987, Vol. 19, No. 7, pp. 368-374.   

94. Narayanan Namboothiri, V. N. and Shunmugam, M. S., “Function-Oriented Form 
Evaluation of Engineering Surfaces,” Precision Engineering, 1998, Vol. 22, pp. 98-
109.   

 


