Research Focus Area:
Biomedical Design and Manufacturing

Background
Healthcare is a new frontier of manufacturing research. Biomedical manufacturing is defined as the application of manufacturing technologies to improve the safety, quality, efficiency, speed and cost of the healthcare service and biomedical science.

Goal
Foster innovation and the distribution of new biomedical technologies by working closely with clinicians, scientists, nurses, caregivers, patient focus groups, engineers and business professionals through education and research to, ultimately, transform and advance the healthcare.

Interdisciplinary Collaboration

Education: Educate a new generation of innovators with advanced technical and business skills who will be leaders in biomedical device and health technology.

Innovation: Catalyze the development of innovative biomedical devices and treatment procedures as well as broaden the manufacturing research to healthcare.

Entrepreneurship: Aimed at creating the culture and systems that can bring broad clinical access to health technology through business creation.

Topics of Biomedical Design and Manufacturing

Assistive Systems in Aging Society

- Society is changing. By 2030, over the age of 65 will be nearly 20% of the US population.
- Challenges: Finding innovative design for people with disability to adopt assistive devices in nonobvious ways to maintain their independence, mobility and dignity.
- Projects include: (1) pressure ulcers: contact stress in bony prominence regions and patient handling, (2) 3D printing of custom orthoses and prostheses, (3) assistive and rehabilitation devices and others.

Population pyramids of US in 2030

Common sites of pressure ulcers

Database of 3D geometry in pressure ulcer prone regions

Pressure and stress in shoulder region

Innovative Medical Devices

- Electrosurgical devices with thermal management to minimize nerve injury
- Mist cooling for endonasal bone grinding in minimally invasive brain surgery
- Bioimpedance sensors for whole body monitoring and diagnosis
- Ultrasound for blood flow shear measurements for aortic dissection, aneurysm, arteriovenous fistula, and other vascular diseases.

Needles and Needle Devices

- The most common feature in medical devices
- Needle insertion is a tissue cutting process
- Model and optimal design the inclination angle and rake angle on the needle cutting edges to reduce the insertion force and core biopsy length
- CNC grinding of advanced needle tip geometry
- Bio-inspired needle designs

Clinical Simulators

- Transform the traditional “see one, do one, teach one” clinical education to “see one, practice many with simulator, do one, teach one” with the goal to improve patient safety
- Use 3D printing as the enabling technology for anatomically-accurate clinical simulators with novel phantom materials with the same tactile, ultrasound, mechanical and other properties
- Simulators built: Ventriculostomy, Eye and cataract surgery, Heart and aorta, Abdominal abscess access, Prostate brachytherapy, Femoral, radial and peripheral vascular access, endonasal approach to the skull base, and minimally invasive spinal surgery.

Neurovascular simulation

- Skull model and ventriculostomy simulator (Neurosurgery)
- Eye and cataract surgery simulator (Ophthalmology)
- Abdominal abscess drainage simulator (Gastroenterology)
- Brachytherapy simulator (Urology)
- Femoral arterial access simulator (Interventional cardiology)
- Shoulder simulator (Radiology)
- Radial Peripheral IV access simulator (Interventional cardiology)
- Spine simulator (Neurosurgery)

Needle cutting edge

CNC grinding of needle tip

Specific force vs. rake and inclination angles

Optimal design and manufacturing of NLPs

Electrode

Fixture

Thermistors

Bipolar electrosurgical vessel sealing

Mosquito proboscis

3D Printed

Portable tetrapolar bioimpedance sensor

Blood

Capillary layer

Sweat duct

Active electrode (70 V)

Passive electrode (0 V)

Pressure and stress in shoulder region

Image of 3D geometry in pressure ulcer prone regions

Elbow

Ankle

Sacrum

Shoulder model geometry

Database of 3D geometry in pressure ulcer prone regions

Common sites of pressure ulcers

Pressure and stress in shoulder region

Biomedical Design and Manufacturing

Collaboration

Create multidisciplinary teams from the Engineering, Medical, Nursing, and Business Schools that will participate in biomedical design and manufacturing education and research. Facilitate dynamic relationships with industry that will accelerate innovation.

Education and research. Facilitate dynamic relationships with industry that will participate in biomedical design and manufacturing business skills who will be leaders in biomedical device and health technology.

Interdisciplinary Collaboration

- Assistive Systems in Aging Society
- Elective and mandatory courses in the Engineering, Medical, Nursing, and Business Schools.
- Computer-based and hands-on simulations.
- Collaboration closely with clinicians, scientists, nurses, caregivers, patient focus groups, engineers and business professionals through education and research to, ultimately, transform and advance the healthcare.