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Abstract

A model of three-dimensional cutting is developed for predicting tool forces and the chip flow angle. The approach consists of
coupling an orthogonal finite element cutting model with an analytical model of three-dimensional cutting. The finite element model
is based on an Eulerian approach, which gives excellent agreement with measured tool forces and chip geometries. The analytical
model was developed by Usui et al. [ASME J. Engng Indust. 100(1978) 222; 229], in which a minimum energy approach was
used to determine the chip flow direction. The model developed by Usui required orthogonal cutting test data to determine the tool
forces and chip flow angle. In this paper, a finite element model is used to supply the orthogonal cutting data for Usui’s model.
With this approach, a predictive model of three-dimensional cutting can be developed that does not require measured data as input.
Cutting experiments are described in which good agreement was found between measured and predicted tool forces and chip flow
angles for machining of AISI 1020 steel. 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Practical machining operations, such as turning,
involve cutting tools with two cutting edges and an
included nose radius. In three-dimensional cutting, tool
forces and the direction of chip flow are influenced by
both cutting edges and the tool nose radius. Reliable pre-
dictions of cutting forces and chip flow are important for
tool and fixture design and estimation of power require-
ments.

One of the earliest studies of three-dimensional cut-
ting was undertaken by Merchant [3], in which the
mechanics of cutting were analyzed for both orthogonal
and oblique cutting. Mechant developed an equation for
the chip flow angle, which is defined as the angle
between a line that is normal to the cutting edge and the
direction of chip flow on the tool face. In 1951, Stabler
[4] developed a full geometrical analysis in which the
chip flow angle was found to be equal to the inclination
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angle. This is sometimes referred to as Stabler’s flow
rule. Good agreement with Stabler’s flow rule has been
found by many workers, including Shaw et al. [5] and
Pal and Koenigsberger [6]. As a result, Stabler’s rule has
been widely accepted as a satisfactory predictor of chip
flow direction. Others have proposed that the chip flow
angle depends on the rake angle [7] and the cutting speed
[8]. Other relationships for the chip flow angle have been
proposed by Armarego and Brown [9], which was sub-
sequently verified by Lin and Oxley [10] with cutting
tests. An early attempt to predict three-dimensional cut-
ting forces was also reported by Lin and Oxley [10], in
which the forces were predicted from the workpiece flow
stress measured in a machining test.

In another effort, Lin [11] applied a similar approach
in which the shear strength of the chip at the tool–chip
interface was treated as a friction factor. The shear
strength was expressed as a function of the strain rate
and temperature. Good agreement was found between
machining experiments on steel and Stabler’s chip
flow rule.

Conventional turning operations in which cutting
occurs along two cutting edges have also been reported.
Hu et al. [12] conducted a series of oblique turning tests
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Nomenclature

A Area in the shear plane
A1,A2 Areas
b Cutting width
Cs Side cutting edge angle
Ce End cutting edge angle
f Feed rate
Fh Horizontal cutting force
FH Principal component of the cutting force
Ft Friction force
FT Transverse force
FV Vertical force
[F] Global external force vector
i Inclination angle
[K] Global stiffness matrix
Nt Normal force
Q Projected area of the cutting cross section
R Nose radius
t Undeformed chip thickness
t1 Depth of cut
[U] Global nodal velocity vector
Us Shear energy rate
Uf Friction energy rate
V Cutting velocity
Vc Chip flow velocity
Vs Chip velocity in the shear plane
a Penalty factor
an Rake angle
ae Effective rake angle
b Friction angle
ėn Volume strain rate
ẽ̇ Second variant of the strain rate tensor
fe Shear plane angle, angle between the shear plane and cutting velocity
� Potential energy
m Viscosity
hc Chip flow angle
sy Uniaxial shear stress
ts Shear stress in the shear plane

to determine the effect of two cutting edges on the cut-
ting forces and chip flow direction without considering
the effect of the nose radius. The first model for two
cutting edges was developed by Colwell [13], in which
a geometric model of an equivalent cutting edge was
established for sharp-nosed tools. The chip flow over the
rake face of the tool was assumed to be perpendicular
to the major axis of the projected area of the cut.
Although tool geometry effects were considered, this
method was limited to zero rake and inclination angles.

Young et al. [14] modified the equivalent cutting edge
model by assuming that the resultant friction force
coincides with the chip flow direction. The chip was
treated as a series of independent thin elements for which

Stabler’s rule applied, and the resultant friction force
was found as the vector sum of the friction force acting
on each element. Although the nose radius was included
in this model, the rake angle inclination angles were
assumed to be zero.

Practical cutting tools have a nose radius that
improves not only the surface finish but also the tool’s
strength and wear characteristics. One of the first models
to include the tool nose radius was due to Usui and his
co-workers [1,2]. In this work, the chip is treated as a
collection of parallel orthogonal slices so that more com-
plicated three-dimensional cutting processes can be sim-
plified as a series of orthogonal analyses. Using orthog-
onal cutting test data, a minimum energy method was
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used to predict chip flow direction and cutting forces.
An equivalent cutting edge model was developed for cal-
culating chip flow angle and cutting forces, in which the
effects of nose radius and end cutting edges were con-
sidered [15]. These models have important practical
implications because they incorporate the nose radius, as
well as non-zero rake and inclination angles.

Use of the finite element method for simulating a var-
iety of manufacturing processes such as metal forming
[16,17] and cutting [18–33] have been well documented.
Van Luttervelt et al. [25] and Mackerle [26] have
reviewed the use of finite element modeling of machin-
ing operations. Lin and Zheng [24] and Lin and Lin
[27,28] used an updated Lagrangian method to study
oblique cutting. Ceretti et al. [29] used a three-dimen-
sional finite element code to simulate the turning pro-
cess. A novel approach for simulating the cutting process
was developed by Carroll and Strenkowski [19]. This
model employed an Eulerian approach in which the grid
is spatially fixed. The workpiece is assumed to behave
as a viscoplastic material. The model is more accurate
and computationally less intensive than an updated Lag-
rangian approach. The disadvantage is that the final
shape of the chip cannot be easily predicted. Strenkow-
ski and Moon [20] improved the model by including a
free surface algorithm to determine the final chip
geometry. In addition, the cutting forces, stress, strain
rate, and temperature distributions in the tool and work-
piece were determined.

The Eulerian approach was utilized by Yang [30] to
predict chip breaking for groove-type tools. Athavale
[31] and Athavale and Strenkowski [32] applied the Eul-
erian approach for predicting chip breakability for
groove and obstruction-type tools based on a material
damage criterion. Further extension of the Eulerian cut-
ting model for three-dimensional oblique cutting has
been reported by Hsu [33]. However, the model was lim-
ited because the tool nose radius was treated as a series
of straight edges. Because the tool nose radius can greatly
affect cutting forces and surface finish, a more realistic
model that includes the tool nose is needed.

Even with the advancement of high speed computers,
it is still not practical for detailed modeling of three-
dimensional metal cutting using the finite element tech-
nique because of significant computational requirements.
As an alternative, the approach taken by Usui et al. [1,2]
in which three-dimensional cutting is treated as a series
of orthogonal slices offers promise as a practical
approach for analyzing cutting processes. In this paper,
the shortcoming of Usui’s approach of requiring orthog-
onal cutting data is eliminated because this data is pro-
vided by an orthogonal finite element cutting model. By
coupling these two approaches, a predictive model of
three-dimensional cutting can be developed for a wide
range of cutting conditions and tool geometries without
requiring extensive cutting tests.

2. Finite element cutting model

An Eulerian finite element technique is well suited for
modeling steady state cutting processes. In this method,
the workpiece and chip flow through a control volume
defined by the finite element grid. The chip shape is
established by requiring that external boundaries of the
chip be coincident with the assumed chip boundaries.
Convergence to the correct chip shape can be achieved
through successive iterations.

The workpiece material that forms the chip can be
treated as a rigid viscoplastic material with a viscosity
given by

m �
sy

�3ẽ̇
(1)

where ẽ̇ is the second invariant of the strain rate tensor.
This equation is strictly applicable to ideal plasticity,
although an additional term can be included to account
for work hardening. Plastic flow occurs when the flow
stress exceeds the uniaxial yield stress, sy. When the
flow stress is less than the yield, the strain rate is zero
and the viscosity becomes infinite. Therefore to avoid
numerical problems, a bound for the viscosity must be
supplied.

The finite element equations for viscoplasticity can be
derived in terms of nodal velocities. Using a linear isopa-
rametric quadrilateral element, the velocity and strain
rate can be expressed in terms of the nodal velocity. For
a two-dimensional flow field, the finite element stiffness
equations are derived by requiring that the potential
energy rate � be a minimum. For incompressibility, the
following constraint equation must be satisfied

ėν � [M]T[ė] � ėxx � ėyy � ėzz � 0 (2)

where ėν is the volume strain rate. To impose the incom-
pressibility constraint, a penalty function method is util-
ized. A penalty factor a, which is a large positive num-
ber, is used to modify the potential energy as

�∗ � � � �
�

aėnd� (3)

The element stiffness matrix is found by minimizing the
augmented potential energy. The global stiffness matrix
is then derived by assembling each element in the
domain to give:

[K][U] � [F] (4)

where [K], [U], and [F] represent the global stiffness
matrix, nodal velocity vector, and external nodal force
vector, respectively.

Note that the stiffness matrix contains the penalty fac-
tor a. As a becomes larger, the imposed constraint is
more nearly satisfied. For nearly incompressible viscopl-
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asticity, a becomes a very large number. Ill-conditioning
of the coefficient matrix can result, leading to a loss of
accuracy in velocity and large errors in the computed
stresses. This problem can be remedied by using a
reduced and selective integration technique. In this tech-
nique, a lower order one-point integration scheme is
applied to the dilatational terms in the stiffness matrix,
and a two-point scheme is applied to the deviatoric
terms.

Once the velocity has been determined, the strain rate
and flow stress can be obtained. In addition, the mean
angle of friction can be found as the ratio of the mean
normal and frictional force components. The friction
angle will be needed to determine the chip flow angle
and the three-dimensional tool forces.

3. Review of the three-dimensional cutting analysis

An analytical model developed by Usui et al. [1,2] for
predicting the chip flow angle and three-dimensional tool
forces is first reviewed. The analysis is based on an
energy approach in which three-dimensional cutting is
approximated as a series of orthogonal slices. Using
orthogonal cutting data under equivalent cutting con-
ditions, the chip flow angle and three-dimensional tool
forces can be determined for single-point tools with a
nose radius.

Consider first the simplest case of a tool with a zero
nose radius as shown in Fig. 1. The inclination angle of
the main cutting edge is i, the depth of cut is t1, and the
cutting width is b. When i � 0, the cutting configuration
is orthogonal. The underlying assumption of the model
is that a chip is produced by shear forces acting simul-
taneously in two planes. The main cutting edge CD pro-
duces shear in the trapezoidal plane CEFD, while the

Fig. 1. Basic model of double edge cutting [1] in which the plane
IHERQGC represents an orthogonal cutting plane to approximate
three-dimensional cutting.

secondary cutting edge CB produces shear in the triangu-
lar plane CEB.

In this approach, three-dimensional cutting is simpli-
fied as a collection of plane strain orthogonal cutting
slices. One typical plane is represented by IHERQGC,
which is shown as cross-hatched in Fig. 1. This plane is
defined by the cutting velocity V and the chip flow velo-
city vector Vc. Chip formation in this plane may be
regarded as plane strain deformation with a correspond-
ing shear angle, mean friction angle, and work material
shear strength as in orthogonal cutting. Therefore, the
line CE may be regarded as the shear plane and line
HI may be considered the undeformed chip thickness in
orthogonal cutting. Any other plane that is parallel to the
plane IHERQGC will have the same effective angle and
effective rake angle, but it will have a different depth of
cut t. Therefore, three-dimensional cutting is interpreted
as a series of orthogonal slices, each with the same effec-
tive shear angle and effective rake angle along the main
cutting edge.

The effective rake angle ae is measured on the plane
which is formed by the chip flow velocity Vc and cutting
velocity V, and defined by the angle between the chip
flow direction and a line normal to the cutting velocity.
This angle can be related to the chip flow angle (hc), the
inclination (i), and the rake (an) by [1]

ae � sin�1(sin an cos i cos hc � sin hc sin i) (5)

The chip flow angle hc can be determined using an
energy approach. The total cutting energy per unit time
VFH, where FH is the principal component of cutting
force, is equal to the consumption of shear energy on
the shear plane and friction energy on the tool face. The
cutting energy is converted into energy on the shear
plane and energy due to friction along the rake face. The
energy on the shear plane can be written as an energy
rate Us as [1]

Us � tsVsA (6)

where A is the total shear plane area, and Vs and ts are
the velocity and shear stress on the shear plane, respect-
ively. The area A consists of the triangle CEB (A1), and
the trapezoid CEFD (A2) shown in Fig. 1. Usui et al. [1]
has shown that the area can be written as explicit func-
tions of the shear angle, inclination angle, effective rake
angle, normal rake angle, and chip flow angle. Also from
orthogonal theory, the velocity in the shear plane is
given by Usui et al. [1]:

Vs �
cos ae

cos(fe�ae)
V (7)

where fe is the angle between the shear velocity and
cutting velocity, and ae is the effective rake angle. Thus,
the shear energy rate Us in Eq. (6) may be rewritten
as [1]:
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Us �
ts(A1 � A2)cos ae

cos(fe�ae)
V (8)

The friction energy rate Uf on the rake face can be found
by a similar analysis [1] as,

Uf � Ft

sin fe

cos(fe�ae)
V (9)

In order to calculate the total energy rate from Eqs.
(8) and (9), the effective shear plane angle (fe) and the
shear plane stress (ts) must be known. It is assumed that
the relationships between fe and ts and the effective rake
angle ae are the same as those in orthogonal cutting
under equivalent conditions. In addition, by assuming
that the friction force acting on the unit width of the tool
face with undeformed chip thickness t is the same as the
friction force in orthogonal cutting with unit width of
cut and undeformed chip thickness t, the friction force
Ft can be written as [1]:

Ft �
ts sin b cos ae

cos(fe � b�ae)sin fe
Q (10)

where b is the friction angle on the tool face and Q is
given for a sharp tool to be:

Q �
bt1

cos i cos an

(11)

These equations can be used to evaluate the friction
energy rate Uf in Eq. (9).

The total cutting energy can be found by adding the
contributions from the shear and friction energy rates.
Note that the energy rates are dependent on the chip flow
angle hc, which is not known. However, the angle can
be found from the condition that the chip will flow in a
direction that minimizes the cutting energy U.

The principal tool force FH can be derived from equi-
librium of energy to be [1]:

FH � � ts cos ae

cos(fe�ae)
�(A1 � A2) (12)

�
bt1 sin b

cos(fe � b�ae)cos i cos an
��

The normal force Nt can be determined from the equ-
ation [1]:

Nt cos an cos i � Ft sin ae � FH (13)

Once Nt is known, the vertical force FV and transverse
force FT components can be written in terms of the nor-
mal force Nt as [1]:

FV � �Nt sin an � Ft cos hc cos an (14)

FT � �Nt cos ansin i � Ft sin hc cos i (15)

�Ft cos hc sin i sin an

Fig. 2. Single point tool with side and end cutting edge angles [2].

where Ft is the friction force. Note that in Usui’s analysis
[1,2], orthogonal cutting tests are necessary to provide
the shear stress ts, shear angle fe, and friction angle b
needed in the above equations. The force components
are functions of an, i, b, t1, and hc. For any cutting con-
dition, the parameters an, i, b, and t1 are known con-
stants, while the chip flow angle hc can be evaluated
using the energy method. Therefore, the three-dimen-
sional tool forces can be readily determined.

3.1. Tools with nonzero nose radius

A similar energy approach can be taken for predicting
the chip flow angle and tool forces for the more general
case of a nonzero tool nose radius R as shown in Fig.
2, where Cs is the side cutting edge angle and Ce is the
end cutting edge angle [2].

Consider a tool for which the nose radius R is large
compared to the feed rate f, as shown in Fig. 3. Follow-
ing the same procedure as for a zero nose radius tool,
expressions for Us and Uf can be derived [2]:

Fig. 3. Shear plane and projected area Q of cutting cross section for
tool with large nose radius as compared with feed rate [2].
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Us � tsAVs �
tsA cos ae

cos(fe�ae)
V (16)

Uf � FtVc �
ts sin b cos ae

cos(fe � b�ae)cos(fe�ae)
QV (17)

where A is the area of the shear plane, and Q is the
projected area of the cutting cross section to the tool face
in the cutting velocity V direction. Note that Q depends
on the tool nose radius and it is different in general than
the value given in Eq. (11). The shear plane can be div-
ided into several sections depending on the tool face
geometry and cutting conditions. Three types of cutting
cross-sections can be identified, depending on whether
the nose radius R is less than, equal to, or greater than
the depth of cut.

Using geometrical considerations, relationships for A
and Q in terms of hc, fe, ae, the tool geometry, and the
cutting conditions can be found [2]. The chip flow angle
hc and the three-dimensional tool forces are found by
minimizing the energy. Other tools in which the nose
radius R is smaller than the feed rate can also be
addressed with this approach, as described by Usui and
Hirota [2].

3.2. The finite element model

Isoparametric quadrilateral finite elements with four
nodes and eight degrees-of-freedom were used to model
the workpiece and tool. A sample finite element mesh
that represents orthogonal cutting under plane strain con-
ditions with a 5° rake angle, 11° clearance angle, and
0.762 mm depth of cut is shown in Fig. 4. A finer mesh
is used in areas in which high stress gradients occur,
such as the shear zone along the rake face of the cutting
tool and the primary shear zone. Different meshes with
a similar configuration were used to simulate other rake
angles and depth of cuts.

Fig. 4. A sample two-dimensional finite element mesh for 0.762 mm
depth of cut, 5° rake angle, and 11° clearance angle.

4. Coupling finite element and analytical models

In Usui’s original three-dimensional analysis [1,2],
orthogonal cutting tests were conducted to provide the
necessary data for the analytical model. This data con-
sists of the shear stress on the shear plane ts, the friction
angle b, and the shear plane angle fe. Note that the
relationship between fe and ae is assumed to be the same
as that for f and a for the equivalent orthogonal cutting
conditions. In this paper, the input data consisting of ts,
b, and fe is derived from the finite element orthogonal
cutting model. The computed shear stress ts varied lin-
early from 568 MPa for a zero rake angle to 548 MPa
for a 20° rake for AISI 1020 steel. Fig. 5 shows the
computed friction and shear plane angles for several rake
angles. The friction angle b is found from the vertical
and principal force components, which are also com-
puted with the finite element model. Finally, the shear
plane angle fe is derived from the computed chip
geometry as the slope of a line between a maximum
nodal strain rate and a node on the cutting edge of the
tool. Note that the shape and thickness of the chip is
iteratively determined with the finite element model. The
chip shape is adjusted until the velocity along its bound-
aries is completely tangential to the free surfaces of the
chip. Using this criterion for convergence, the chip thick-
ness was usually found within twenty iterations.

The advantage of using the finite element model
instead of orthogonal cutting experiments is that data can
be obtained more readily than from cutting tests. In
addition, tool shapes other than flat tools with sharp
edges can be simulated. For example, the finite element
model allows for the introduction of a radius on the cut-
ting edge. Other tool shapes can also be simulated, such
as groove and obstruction type tools. Note that care must
be exercised in applying this theory to tools other than
sharp flat tools because many of the underlying equa-

Fig. 5. Predicted orthogonal friction and shear plane angles for AISI
1020 (depth of cut=0.76 mm, feed=0.165 mm/rev, speed=1.6 m/s).
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tions used in the analytical cutting model are applicable
only to sharp flat tools. Nonetheless, the procedure
developed in this paper provides the foundation for the
study of more advanced tools for three-dimensional cut-
ting.

5. Experimental setup

Cutting experiments were conducted to validate the
three-dimensional cutting model. A low carbon AISI
1020 steel seamless tube, 38.1 mm in diameter and 9.53
mm thick, was used as the workpiece. The cutting
experiments were conducted on a 3.7 kW conventional
lathe. Flat commercial carbide tool inserts TPG-3 series
with four nose radii ranging from 0.4 to 1.59 mm were
used to machine the steel workpiece for speeds of 1.2
and 1.6 m/s, inclination angles from 0 to 15°, and feed
rates of 0.09 and 0.165 mm/rev. The TPG-3 series cut-
ting tools were triangular KC 810 carbide inserts pro-
duced by Kennametal.

For tools with more than one cutting edge, the chip
flow angle hc was determined by measuring wear marks
on the tool. Photographs of the tools were prepared with
a metallographic microscope and the orientation of the
score marks was measured with a toolmaker’s micro-
scope. The principal, vertical, and transverse force
components were measured using a Kistler 3198 piezoe-
lectric dynamometer mounted on the traversing carriage
of the lathe. Two cutting tests were performed for each
cutting condition and the average of the two measure-
ments was recorded as the final result.

6. Validation of the cutting model

The three-dimensional cutting analysis was validated
by comparing predicted chip flow angles and tool forces
with cutting test data. The measured and predicted chip
flow angles are compared in Fig. 6 for an inclination

Fig. 6. Comparison of predicted and measured chip flow angle versus
depth of cut (i � 10°, feed=0.165 mm/rev, speed=1.6 m/s).

angle of 10° for a flat tool with a nose radius of 0.79
mm and a feed of 0.165 mm/rev. Similar agreement was
found for an inclination angle of 5° for the same tool
and cutting conditions, as well as for a slower cutting
speed of 1.2 m/s. As expected, the chip flow angle
approaches the inclination angle for large depths of cut,
which is consistent with Stabler’s rule. This is because
as the depth of cut becomes large, the main cutting edge
dominates the cutting process and the end cutting edge
only plays a minor role. Note that measurement accuracy
of the chip flow angle is diminished somewhat for small
depths of cut because the chip is highly flexible at these
depths of cut.

A comparison between the predicted and measured
tool force components is shown in Fig. 7, in which the
forces are shown as a function of the tool nose radius.
The cutting conditions for these forces were a depth of
cut of 0.76 mm, a speed of 1.6 m/s, and a feed rate of
0.165 mm/rev. In general, the principal cutting force is
nearly constant, while the vertical force decreases with
tool radius. In contrast, the transverse force increases
with the tool radius. This is consistent with the obser-
vation that the chip flow angle increases with tool radius.
This is expected because a larger radius tool will engage
a greater portion of the workpiece, thus increasing both
the transverse force and the chip flow angle. Similar cut-
ting tests were undertaken for other conditions, including
a slower cutting speed of 1.2 m/s and a larger depth of
cut of 1.9 mm. Good agreement was found with an aver-
age discrepancy of about 15%.

Figure 8 shows the variation of the three tool force
components with inclination angle for the TPG-322 flat
tool with a nose radius of 0.79 mm, feed of 0.165
mm/rev, speed of 1.2 m/s, and depth of cut of 1.52 mm.
Excellent agreement was found between measured and
predicted forces. Similar agreement was found for tools

Fig. 7. Comparison of the tool forces versus nose radius (feed=0.165
mm/rev, speed=1.6 m/s, depth of cut=0.76 mm).
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Fig. 8. Comparison of tool forces versus inclination angle
(feed=0.165 mm/rev, speed=1.2 m/s, depth of cut=1.52 mm).

with different nose radii of 0.4, 1.19, and 1.59 mm,
operating at a speed of 1.6 m/s for depths of cut of 0.76
and 1.9 mm.

The model developed by Usui et al. [1,2] treated the
tool as sharp. In reality, all tools have a slight rounding
of the cutting edge for strength. An average edge radius
of 0.05 mm was measured for the tools in this paper.
The edge radius becomes more significant as the feed
rate is reduced, because deformation in the primary shear
zone is more highly effected by the cutting edge radius.
Therefore, less agreement between the measured and
predicted tool forces would be anticipated for smaller
feed rates. This can be seen in Fig. 9 for a tool with a

Fig. 9. Comparison of the tool forces versus nose radius (feed=0.09
mm/rev, speed=1.6 m/s, depth of cut=1.9 mm).

feed of 0.09 mm/rev. In contrast, the discrepancy
between measured and predicted tool forces is much
smaller when cutting under comparable conditions but
with a larger feed of 0.165 mm/rev, as shown in Fig. 10.

7. Conclusions

In this paper, an analytical model of three-dimensional
cutting developed by Usui et al. [1,2] is coupled with an
Eulerian finite element model of orthogonal cutting. In
the original analytical model, the three-dimensional cut-
ting process was treated as a collection of equivalent
orthogonal slices. Data for each slice was derived from
orthogonal cutting tests. In this paper, a finite element
cutting model is used to provide the input data, which
consists of the shear angle, the shear stress acting on the
shear plane, and the friction angle.

Several flat tools with different nose radii were tested
under a variety of cutting conditions to verify the model.
Very good agreement was found based upon measured
three-dimensional tool forces and chip flow angles. It
was also found that although the model developed by
Usui et al. [1,2] is strictly applicable to only sharp flat
tools, the model can be used for tools with a cutting edge
radius if the feed rate is sufficiently large as compared
to the edge radius. Therefore, good agreement between
measured and predicted forces and chip flow angles was
found for these tools provided that the feed rate is large
compared to the cutting edge radius.

The advantage of this approach is that three-dimen-
sional tool forces and chip flow angles can be predicted
without the need for corresponding cutting tests. In

Fig. 10. Comparison of the tool forces versus nose radius
(feed=0.165 mm/rev, speed=1.6 m/s, depth of cut=1.9 mm).
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addition, more complex tool geometries such as groove-
type chipbreaker tools can be analyzed. Therefore, a true
predictive model of cutting can be achieved for studying
a wide range of cutting conditions and tool geometries
prior to fabrication, thereby reducing design time and
development costs for new and more complex tool geo-
metries.
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